Prostate cancer cell-stromal cell crosstalk via FGFR1 mediates antitumor activity of dovitinib in bone metastases

Bone is the most common site of prostate cancer (PCa) progression to a therapy-resistant, lethal phenotype. We found that blockade of fibroblast growth factor receptors (FGFRs) with the receptor tyrosine kinase inhibitor dovitinib has clinical activity in a subset of men with castration-resistant PC...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Wan, X.
Otros Autores: Corn, P.G, Yang, J., Palanisamy, N., Starbuck, M.W, Efstathiou, E., Li-Ning Tapia, E.M, Zurita, A.J, Aparicio, A., Ravoori, M.K, Vazquez, E.S, Robinson, D.R, Wu, Y.-M, Cao, X., Iyer, M.K, McKeehan, W., Kundra, V., Wang, F., Troncoso, P., Chinnaiyan, A.M, Logothetis, C.J, Navone, N.M
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: American Association for the Advancement of Science 2014
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:Bone is the most common site of prostate cancer (PCa) progression to a therapy-resistant, lethal phenotype. We found that blockade of fibroblast growth factor receptors (FGFRs) with the receptor tyrosine kinase inhibitor dovitinib has clinical activity in a subset of men with castration-resistant PCa and bone metastases. Our integrated analyses suggest that FGF signaling mediates a positive feedback loop between PCa cells and bone cells and that blockade of FGFR1 in osteoblasts partially mediates the antitumor activity of dovitinib by improving bone quality and by blocking PCa cell-bone cell interaction. These findings account for clinical observations such as reductions in lesion size and intensity on bone scans, lymph node size, and tumor-specific symptoms without proportional declines in serum prostate-specific antigen concentration. Our findings suggest that targeting FGFR has therapeutic activity in advanced PCa and provide direction for the development of therapies with FGFR inhibitors. © 2014, American Association for the Advancement of Science. All rights reserved.
Bibliografía:Carlin, B.I., Andriole, G.L., The natural history, skeletal complications, and management of bone metastases in patients with prostate carcinoma (2000) Cancer, 88, pp. 2989-2994
Loberg, R.D., Logothetis, C.J., Keller, E.T., Pienta, K.J., Pathogenesis and treatment of prostate cancer bone metastases: Targeting the lethal phenotype (2005) J. Clin. Oncol., 23, pp. 8232-8241
Turner, N., Grose, R., Fibroblast growth factor signalling: From development to cancer (2010) Nat. Rev. Cancer, 10, pp. 116-129
Corn, P.G., Wang, F., McKeehen, W., Navone, N., Targeting fibroblast growth factor pathways in prostate cancer (2013) Clin. Cancer Res., 19, pp. 5856-5866
Powers, C.J., McLeskey, S.W., Wellstein, A., Fibroblast growth factors, their receptors and signaling (2000) Endocr. Relat. Cancer, 7, pp. 165-197
Ornitz, D.M., FGFs, heparan sulfate and FGFRs: Complex interactions essential for development (2000) Bioessays, 22, pp. 108-112
Gotoh, N., Regulation of growth factor signaling by FRS2 family docking/scaffold adaptor proteins (2008) Cancer Sci., 99, pp. 1319-1325
McKeehan, W.L., Wang, F., Kan, M., The heparan sulfate-fibroblast growth factor family: Diversity of structure and function (1998) Prog. Nucleic Acid Res. Mol. Biol., 59, pp. 135-176
Acevedo, V.D., Gangula, R.D., Freeman, K.W., Li, R., Zhang, Y., Wang, F., Ayala, G.E., Spencer, D.M., Inducible FGFR-1 activation leads to irreversible prostate adenocarcinoma and an epithelial-to-mesenchymal transition (2007) Cancer Cell., 12, pp. 559-571
Memarzadeh, S., Xin, L., Mulholland, D.J., Mansukhani, A., Wu, H., Teitell, M.A., Witte, O.N., Enhanced paracrine FGF10 expression promotes formation of multifocal prostate adenocarcinoma and an increase in epithelial androgen receptor (2007) Cancer Cell, 12, pp. 572-585
Zhang, Y., Zhang, J., Lin, Y., Lan, Y., Lin, C., Xuan, J.W., Shen, M.M., Wang, F., Role of epithelial cell fibroblast growth factor receptor substrate 2α in prostate development, regeneration and tumorigenesis (2008) Development, 135, pp. 775-784
Valta, M.P., Tuomela, J., Bjartell, A., Valve, E., Väänänen, H.K., Härkönen, P., FGF-8 is involved in bone metastasis of prostate cancer (2008) Int. J. Cancer, 123, pp. 22-31
Li, Z.G., Mathew, P., Yang, J., Starbuck, M.W., Zurita, A.J., Liu, J., Sikes, C., Navone, N.M., Androgen receptor-negative human prostate cancer cells induce osteogenesis in mice through FGF9-mediated mechanisms (2008) J. Clin. Invest., 118, pp. 2697-2710
Yang, J., Fizazi, K., Peleg, S., Sikes, C.R., Raymond, A.K., Jamal, N., Hu, M., Navone, N.M., Prostate cancer cells induce osteoblast differentiation through a Cbfa1-dependent pathway (2001) Cancer Res., 61, pp. 5652-5659
Roychowdhury, S., Iyer, M.K., Robinson, D.R., Lonigro, R.J., Wu, Y.M., Cao, X., Kalyana-Sundaram, S., Chinnaiyan, A.M., Personalized oncology through integrative high-throughput sequencing: A pilot study (2011) Sci. Transl. Med., 3, p. 111ra121
Martin, A., David, V., Quarles, L.D., Regulation and function of the FGF23/klotho endocrine pathways (2012) Physiol. Rev., 92, pp. 131-155
Wöhrle, S., Bonny, O., Beluch, N., Gaulis, S., Stamm, C., Scheibler, M., Müller, M., Graus-Porta, D., FGF receptors control vitamin D and phosphate homeostasis by mediating renal FGF-23 signaling and regulating FGF-23 expression in bone (2011) J. Bone Miner. Res., 26, pp. 2486-2497
Kim, K.B., Chesney, J., Robinson, D., Gardner, H., Shi, M.M., Kirkwood, J.M., Phase I/II and pharmacodynamic study of dovitinib (TKI258), an inhibitor of fibroblast growth factor receptors and VEGF receptors, in patients with advanced melanoma (2011) Clin. Cancer Res., 17, pp. 7451-7461
Angevin, E., Lopez-Martin, J., Lin, C.C., Gschwend, J.E., Harzstark, A., Castellano, D., Soria, J.C., Escudier, B., Phase I study of dovitinib (TKI258), an oral FGFR, VEGFR, and PDGFR inhibitor, in advanced or metastatic renal cell carcinoma (2013) Clin. Cancer Res., 19, pp. 1257-1268
Antonarakis, E.S., Carducci, M.A., Targeting angiogenesis for the treatment of prostate cancer (2012) Expert Opin. Ther. Targets, 16, pp. 365-376
Murakami, M., Simons, M., Fibroblast growth factor regulation of neovascularization (2008) Curr. Opin. Hematol., 15, pp. 215-220
O'Connor, J.P., Jackson, A., Parker, G.J., Roberts, C., Jayson, G.C., Dynamic contrast-enhanced MRI in clinical trials of antivascular therapies (2012) Nat. Rev. Clin. Oncol., 9, pp. 167-177
Murukesh, N., Dive, C., Jayson, G.C., Biomarkers of angiogenesis and their role in the development of VEGF inhibitors (2010) Br. J. Cancer, 102, pp. 8-18
Jacob, A.L., Smith, C., Partanen, J., Ornitz, D.M., Fibroblast growth factor receptor 1 signaling in the osteo-chondrogenic cell lineage regulates sequential steps of osteoblast maturation (2006) Dev. Biol., 296, pp. 315-328
Casanovas, O., Hicklin, D.J., Bergers, G., Hanahan, D., Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors (2005) Cancer Cell, 8, pp. 299-309
Kerbel, R.S., Therapeutic implications of intrinsic or induced angiogenic growth factor redundancy in tumors revealed (2005) Cancer Cell, 8, pp. 269-271
Dror Michaelson, M., Regan, M.M., Oh, W.K., Kaufman, D.S., Olivier, K., Michaelson, S.Z., Spicer, B., Smith, M.R., Phase II study of sunitinib in men with advanced prostate cancer (2009) Ann. Oncol., 20, pp. 913-920
Navone, N.M., Olive, M., Ozen, M., Davis, R., Troncoso, P., Tu, S.M., Johnston, D., Logothetis, C.J., Establishment of two human prostate cancer cell lines derived from a single bone metastasis (1997) Clin. Cancer Res., 3, pp. 2493-2500
Efstathiou, E., Titus, M., Tsavachidou, D., Tzelepi, V., Wen, S., Hoang, A., Molina, A., Logothetis, C.J., Effects of abiraterone acetate on androgen signaling in castrate-resistant prostate cancer in bone (2012) J. Clin. Oncol., 30, pp. 637-643
Lonigro, R.J., Grasso, C.S., Robinson, D.R., Jing, X., Wu, Y.M., Cao, X., Quist, M.J., Chinnaiyan, A.M., Detection of somatic copy number alterations in cancer using targeted exome capture sequencing (2011) Neoplasia, 13, pp. 1019-1025
Robinson, D.R., Wu, Y.M., Kalyana-Sundaram, S., Cao, X., Lonigro, R.J., Sung, Y.S., Chen, C.L., Chinnaiyan, A.M., Identification of recurrent NAB2-STAT6 gene fusions in solitary fibrous tumor by integrative sequencing (2013) Nat. Genet., 45, pp. 180-185
Han, B., Mehra, R., Dhanasekaran, S.M., Yu, J., Menon, A., Lonigro, R.J., Wang, X., Chinnaiyan, A.M., A fluorescence in situ hybridization screen for E26 transformation-specific aberrations: Identification of DDX5-ETV4 fusion protein in prostate cancer (2008) Cancer Res., 68, pp. 7629-7637
Yang, D., Han, L., Kundra, V., Exogenous gene expression in tumors: Noninvasive quantification with functional and anatomic imaging in a mouse model (2005) Radiology, 235, pp. 950-958
Mathew, P., Thall, P.F., Bucana, C.D., Oh, W.K., Morris, M.J., Jones, D.M., Johnson, M.M., Logothetis, C.J., Platelet-derived growth factor receptor inhibition and chemotherapy for castration-resistant prostate cancer with bone metastases (2007) Clin. Cancer Res., 13, pp. 5816-5824
Efstathiou, E., Titus, M., Tsavachidou, D., Tzelepi, V., Wen, S., Hoang, A., Molina, A., Logothetis, C.J., Effects of abiraterone acetate on androgen signaling in castrate-resistant prostate cancer in bone (2012) J. Clin. Oncol., 30, pp. 637-643
Zurita, A.J., Jonasch, E., Wang, X., Khajavi, M., Yan, S., Du, D.Z., Xu, L., Heymach, J.V., A cytokine and angiogenic factor (CAF) analysis in plasma for selection of sorafenib therapy in patients with metastatic renal cell carcinoma (2012) Ann. Oncol., 23, pp. 46-52
ISSN:19466234
DOI:10.1126/scitranslmed.3009332