Lipase-catalyzed synthesis of substituted phenylacetamides: Hammett analysis and computational study of the enzymatic aminolysis

A series of hydroxy-, methoxy-, and nitrophenylacetamides was synthesized by enzyme catalysis. The 28 new products were obtained through a lipase-catalyzed two-step reaction in very good to excellent yield. In the case of nitro derivatives, a one-pot, two-step methodology allowed the desired product...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: García Liñares, G.
Otros Autores: Arroyo Mañez, P., Baldessari, A.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Wiley-VCH Verlag 2014
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:A series of hydroxy-, methoxy-, and nitrophenylacetamides was synthesized by enzyme catalysis. The 28 new products were obtained through a lipase-catalyzed two-step reaction in very good to excellent yield. In the case of nitro derivatives, a one-pot, two-step methodology allowed the desired products to be obtained in high yields. The influence of various reaction parameters in the lipase-catalyzed reactions, such as enzyme source, nucleophile (alcohol or amine)/substrate ratio, enzyme/substrate ratio, solvent and temperature were studied. It was observed that nitro-substituted phenylacetates were more reactive in the aminolysis reaction than phenylacetates substituted with a hydroxyl group. To study this substituent effect, a Hammett analysis and the determination of the ρ parameter were carried out. Moreover, a computational study was applied to the most representative systems, performing an exploration of the potential energy surface for the catalyzed and noncatalyzed aminolysis reaction for nitro- and hydroxyphenylacetates. Both analysis showed that the presence of a strongly electron-attracting group favors the activity of the enzyme, in complete agreement with the experimental results of the enzymatic catalysis. © 2014 Wiley-VCH Verlag GmbH & Co. KGaA.
Bibliografía:Liew, L.P.P., Pierce, A.L., Kaiser, M., Copp, B.R., (2013) Eur. J. Med. Chem., 69, pp. 22-31
Liew, L.P.P., Kaiser, M., Copp, B.R., (2013) Bioorg. Med. Chem. Lett., 23, pp. 452-454
Ertan, T., Yildiz, I., Ozkan, S., Temiz-Arpaci, O., Kaynak, F., Yalcin, I., Aki-Senera, E., Abbasoglu, U., (2007) Bioorg. Med. Chem., 15, pp. 2032-2044
Patel, R.V., Patel, P.K., Kumari, P., Rajani, D.P., Chikhalia, K.H., (2012) Eur. J. Med. Chem., 53, pp. 41-51
Patane, M.A., DiPardo, R.M., Newton, R.C., Price, R.P., Broten, T.P., Chang, R.S.L., Ransom, R.W., Bocka, M.G., (2000) Bioorg. Med. Chem. Lett., 10, pp. 1621-1624
Cumming, J.G., Cooper, A.E., Grime, K., Logan, C.J., McLaughlin, S., Oldfield, J., Shaw, J.S., Whittaker, D., (2005) Bioorg. Med. Chem. Lett., 15, pp. 5012-5015
Cumming, J.G., Brown, S.J., Cooper, A.E., Faull, A.W., Flynn, A.P., Grime, K., Oldfield, J., Whittaker, D., (2006) Bioorg. Med. Chem. Lett., 16, pp. 3533-3536
Wanga, Y., Jiao, X., Kayser, F., Liu, J., Wang, Z., Wanska, M., Greenberg, J., Li, Y., (2010) Bioorg. Med. Chem. Lett., 20, pp. 493-498
Shindikar, A.V., Khan, F., Viswanathan, C.L., (2006) Eur. J. Med. Chem., 41, pp. 786-792
Özkay, Ü.D., Özkay, Y., Can, Ö.D., (2011) Med. Chem. Res., 20, pp. 152-157
Faber, K., (2011) Biotransformations in Organic Chemistry, 6th Ed., , Springer Verlag, Heidelberg, Germany
Whitthall, J., Sutton, P.W., (2012) Practical Methods for Biocatalysis and Biotransformations 2, , John Wiley & Sons Ltd., New York
Tao, J., Lin, G.-Q., Liese, A., (2009) Biocatalysis for the Pharmaceutical Industry: Discovery, Development and Manufacturing, , John Wiley & Sons Ltd., New York
(2008) Organic Synthesis with Enzymes in Non-aqueous Media, , (Eds.: G. Carrea, S. Riva), Wiley-VCH, Weinheim, Germany
Baldessari, A., (2012) Lipases and Phospholipases, Methods and Protocols, pp. 445-456. , (Ed.: G. Sandoval), Humana Press, New York
Rustoy, E.M., Sato, Y., Nonami, H., Erra-Balsells, R., Baldessari, A., (2007) Polymer, 48, pp. 1517-1525
Monsalve, L.N., Fatema, K.M., Nonami, H., Erra-Balsells, R., Baldessari, A., (2010) Polymer, 51, pp. 2998-3005
Monsalve, L.N., Petroselli, G., Vázquez, A., Erra-Balsells, R., Baldessari, A., (2014) Polym. Int., 63, pp. 1523-1530
Gotor, V., Alfonso, I., García-Urdiales, E., (2007) Asymmetric Organic Synthesis with Enzymes, , Wiley-VCH, Weinheim, Germany
Hall, M., Kroutil, W., Faber, K., (2013) The Evolving Role of Biocatalysis in Asymmetric Synthesis II: More Methods and Applications, , Wiley-VCH, New York
Monsalve, L.N., Machado Rada, N.Y., Ghini, A.A., Baldessari, A., (2008) Tetrahedron, 64, pp. 1721-1730
Quintana, P.G., Baldessari, A., (2009) Steroids, 74, pp. 1007-1014
Monsalve, L.N., Roselli, S., Bruno, M., Baldessari, A., (2009) J. Mol. Catal. B, 57, pp. 40-47
Quintana, P.G., Guillén, M., Marciello, M., Palomo, J.M., Valero, F., Baldessari, A., (2012) Eur. J. Org. Chem., pp. 4306-4312
Quintana, P.G., Romero, S.M., Vaamonde, G., Baldessari, A., (2013) J. Mol. Catal. B, 97, pp. 110-117
Liñares, G.G., Baldessari, A., (2013) Curr. Org. Chem., 17, pp. 719-743
García Liñares, G., Parraud, G., Labriola, C., Baldessari, A., (2012) Bioorg. Med. Chem., 20, pp. 4614-4624
Gotor-Fernández, V., Gotor, V., (2006) Curr. Org. Chem., 10, pp. 1125-1143
Gotor-Fernández, V., Busto, E., Gotor, V., (2006) Adv. Synth. Catal., 348, pp. 797-812
Rustoy, E.N., Baldessari, A., (2006) J. Mol. Catal. B, 39, pp. 50-54
Monsalve, L.N., Rustoy, E.M., Baldessari, A., (2011) Biocatal. Biotransform., 29, pp. 87-95
Baldessari, A., Mangone, C.P., (2001) J. Mol. Catal. B, 11, pp. 335-341
Rustoy, E.M., Baldessari, A., (2005) Eur. J. Org. Chem., pp. 4628-4632
Abian, O., Mateo, C., Palomo, J.M., Fernández-Lorente, G., Guisán, J.M., Fernández-Lafuente, R., (2004) Biotechnol. Prog., 20, pp. 984-988
Hammett, L.P., (1935) Chem. Rev., 17, pp. 125-136
Modglin, J.D., II, Erdely, V.K., Lin, C.Y., Coote, M.L., Poole, J.S., (2011) J. Phys. Chem. A, 115, pp. 14687-14696
Kanerva, L.T., Klibanov, A., (1989) J. Am. Chem. Soc., 111, pp. 6864-6865
González-Sabín, J., Lavandera, I., Rebolledo, F., Gotor, V., (2006) Tetrahedron: Asymmetry, 17, pp. 1264-1274
Bornscheuer, U.T., Rodríguez Ordoñez, G., Hidalgo, A., Gollin, A., Lyon, J., Hitchman, T.S., Weiner, D.P., (2005) J. Mol. Catal. B, 36, pp. 8-13
Galabov, B., Atanasov, Y., Ilieva, S., Schaefer, H.F., III, (2005) J. Phys. Chem. A, 109, pp. 11470-11474
Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K., Olson, A.J., (1998) J. Comput. Chem., 19, pp. 1639-1662
Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A., Jr., Pople, J.A., (2004) Gaussian 03, Revision C, , Gaussian Inc., Wallingford
Case, D.A., Darden, T.A., Cheatham, T.E., III, Simmerling, C.L., Wang, J., Duke, R.E., Luo, R., Kollman, P.A., (2012) AMBER 12, , University of California, San Francisco, USA
Salomon-Ferrer, R., Goetz, A.W., Poole, D., Le Grand, S., Walker, R.C., (2013) J. Chem. Theory Comput., 9, pp. 3878-3888
Cheatham, T.E., Cieplak, P., Kollman, P.A., (1999) J. Biomol. Struct. Dyn., 16, pp. 845-862
Berendsen, H.J.C., Postma, J.P.M., Van Gunsteren, W.F., DiNola, A., Haak, J.R., (1984) J. Chem. Phys., 81, pp. 3684-3690
Hehre, W.J., Radom, L., Schleyer, P.V.R., Pople, J.A., (1986) Ab Initio Molecular Orbital Theory, , Wiley, New York
Schlegel, H.B., (1982) J. Comput. Chem., 3, pp. 214-218
Schlegel, H.B., Geometry Optimization on Potential Energy Surface (1994) Modern Electronic Structure Theory, , (Ed.: D. R. Yarkony), World Scientific, Singapore
ISSN:1434193X
DOI:10.1002/ejoc.201402749