An arsenic fluorescent compound as a novel probe to study arsenic-binding proteins

Arsenic-binding proteins are under continuous research. Their identification and the elucidation of arsenic/ protein interaction mechanisms are important because the biological effects of these complexes may be related not only to arsenic but also to the arsenic/protein structure. Although many prot...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Femia, A.L
Otros Autores: Temprana, C.F, Santos, J., Carbajal, M.L, Amor, M.S, Grasselli, M., Del Alonso, S.V
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2012
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:Arsenic-binding proteins are under continuous research. Their identification and the elucidation of arsenic/ protein interaction mechanisms are important because the biological effects of these complexes may be related not only to arsenic but also to the arsenic/protein structure. Although many proteins bearing a CXXC motif have been found to bind arsenic in vivo, new tools are necessary to identify new arsenic targets and allow research on protein/ arsenic complexes. In this work, we analyzed the performance of the fluorescent compound APAO-FITC (synthesized from p-aminophenylarsenoxide, APAO, and fluorescein isothiocyanate, FITC) in arsenic/protein binding assays using thioredoxin 1 (Trx) as an arsenic-binding protein model. The Trx-APAO-FITC complex was studied through different spectroscopic techniques involving UV-Vis, fluorescence, atomic absorption, infrared and circular dichroism. Our results show that APAO-FITC binds efficiently and specifically to the Trx binding site, labeling the protein fluorescently, without altering its structure and activity. In summary, we were able to study a protein/ arsenic complex model, using APAO-FITC as a labeling probe. The use of APAO-FITC in the identification of different protein and cell targets, as well as in in vivo biodistribution studies, conformational studies of arsenicbinding proteins, and studies for the design of drug delivery systems for arsenic anti-cancer therapies, is highly promising. © Springer Science+Business Media, LLC 2012.
Bibliografía:Ado, K., Taniguchi, Y., (2007) Biochim Biophys Acta, 1774 (7), pp. 813-821
Ansorge, W., Sproat, B., Stegemann, J., Schwager, C., Zenke, M., (1987) Nucleic Acids Res, 15 (11), pp. 4593-4602
Ansorge, W., Rosenthal, A., Sproat, B., Schwager, C., Stegemann, J., Voss, H., (1988) Nucleic Acids Res, 16 (5), pp. 2203-2206
Berry, F.B., Skarie, J.M., Mirzayans, F., Fortin, Y., Hudson, T.J., Raymond, V., Link, B.A., Walter, M.A., (2008) Hum Mol Genet, 17 (4), pp. 490-505
Brown, C.J., Dastidar, S.G., See, H.Y., Coomber, D.W., Ortiz-Lombardia, M., Verma, C., Lane, D.P., (2010) J Mol Biol, 395 (4), pp. 871-883
Burwell, L.S., Nadtochiy, S.M., Tompkins, A.J., Young, S., Brookes, P.S., (2006) Biochem J, 394 (PART 3), pp. 627-634
Carbajal, M.L., Espinoza, S.L.S., Valdez, S.N., Poskus, E., Smolko, E.E., Grasselli, M., (2009) React Funct Polym, 69 (11), pp. 816-820
Cleland, W.W., (1964) Biochemistry, 3, pp. 480-482
Clerico, E.M., Ermacora, M.R., (2001) Arch Biochem Biophys, 395 (2), pp. 215-224
Cline, D.J., Thorpe, C., Schneider, J.P., (2003) J Am Chem Soc, 125 (10), pp. 2923-2929
Collet, J.F., Messens, J., (2010) Antioxid Redox Signal, 13 (8), pp. 1205-1216
Coto-Garcia, A.M., Sotelo-Gonzalez, E., Fernandez-Arguelles, M.T., Pereiro, R., Costa-Fernandez, J.M., Sanz-Medel, A., (2011) Anal Bioanal Chem, 399 (1), pp. 29-42
Chen, Y., Parr, T., Holmes, A.E., Nakanishi, K., (2008) Bioconjug Chem, 19 (1), pp. 5-9
Donoghue, N., Yam, P.T., Jiang, X.M., Hogg, P.J., (2000) Protein Sci, 9 (12), pp. 2436-2445
Dorward, A., Sweet, S., Moorehead, R., Singh, G., (1997) J Bioenerg Biomembr, 29 (4), pp. 385-392
Edgington, L.E., Berger, A.B., Blum, G., Albrow, V.E., Paulick, M.G., Lineberry, N., Bogyo, M., (2009) Nat Med, 15 (8), pp. 967-973
Femia, A.L., Temprana, C.F., Amor, M.S., Grasselli, M., Alonso Sdel, V., (2012) Med Chem, 8 (2), pp. 222-229
Fernando, M.R., Nanri, H., Yoshitake, S., Nagata-Kuno, K., Minakami, S., (1992) Eur J Biochem/FEBS, 209 (3), pp. 917-922
Flora, S.J., (2011) Free Radic Biol Med, 51 (2), pp. 257-281
Fu, G.H., Wang, Y., Xi, Y.H., Guo, Z.W., Liu, X.B., Bai, S.Z., Yang, B.F., Chen, G.Q., (2005) J Drug Target, 13 (4), pp. 235-243
Ge, Y., Qi, Z., Wang, Y., Liu, X., Li, J., Xu, J., Liu, J., Shen, J., (2009) Int J Biochem Cell Biol, 41 (4), pp. 900-906
Gholivand, M.B., Ghasemi, J.B., Saaidpour, S., Mohajeri, A., (2008) Spectrochim Acta A Mol Biomol Spectrosc, 71 (3), pp. 1158-1165
Gorman, J.J., (1987) Anal Biochem, 160 (2), pp. 376-387
Griffin, B.A., Adams, S.R., Jones, J., Tsien, R.Y., (2000) Methods Enzymol, 327, pp. 565-578
Gupta, S., Yel, L., Kim, D., Kim, C., Chiplunkar, S., Gollapudi, S., (2003) Mol Cancer Ther, 2 (8), pp. 711-719
Holmgren, A., (1979) J Biol Chem, 254 (19), pp. 9627-9632
Holmgren, A., (1995) Structure, 3 (3), pp. 239-243
Jeng, M.F., Campbell, A.P., Begley, T., Holmgren, A., Case, D.A., Wright, P.E., Dyson, H.J., (1994) Structure, 2 (9), pp. 853-868
Kitchin, K.T., Wallace, K., (2006) J Biochem Mol Toxicol, 20 (1), pp. 48-56
Kitchin, K.T., Wallace, K., (2008) J Inorg Biochem, 102 (3), pp. 532-539
Laurent, T.C., Moore, E.C., Reichard, P., (1964) J Biol Chem, 239, pp. 3436-3444
Layton, C.J., Hellinga, H.W., (2010) Biochemistry, 49 (51), pp. 10831-10841
Lundstrom, J., Krause, G., Holmgren, A., (1992) J Biol Chem, 267 (13), pp. 9047-9052
Martin, S.R., Schilstra, M.J., (2008) Methods Cell Biol, 84, pp. 263-293
Miller Jr., W.H., Schipper, H.M., Lee, J.S., Singer, J., Waxman, S., (2002) Cancer Res, 62 (14), pp. 3893-3903
Mitsui, A., Hirakawa, T., Yodoi, J., (1992) Biochem Biophys Res Commun, 186 (3), pp. 1220-1226
Nakamura, H., Masutani, H., Yodoi, J., (2006) Semin Cancer Biol, 16 (6), pp. 444-451
Nakamura, H., Hoshino, Y., Okuyama, H., Matsuo, Y., Yodoi, J., (2009) Adv Drug Deliv Rev, 61 (4), pp. 303-309
Oblong, J.E., Berggren, M., Powis, G., (1994) FEBS Lett, 343 (1), pp. 81-84
Olson, E.S., Jiang, T., Aguilera, T.A., Nguyen, Q.T., Ellies, L.G., Scadeng, M., Tsien, R.Y., (2010) Proc Natl Acad Sci USA, pp. 1-6
Palaniappan, P.R., Vijayasundaram, V., (2008) Food Chem Toxicol, 46 (11), pp. 3534-3539
Ralph, S.J., (2008) Metal Based Drugs, 2008, p. 260146
Ramadan, D., Cline, D.J., Bai, S., Thorpe, C., Schneider, J.P., (2007) J Am Chem Soc, 129 (10), pp. 2981-2988
Ramadan, D., Rancy, P.C., Nagarkar, R.P., Schneider, J.P., Thorpe, C., (2009) Biochemistry, 48 (2), pp. 424-432
Santos, J., Marino-Buslje, C., Kleinman, C., Ermacora, M.R., Delfino, J.M., (2007) Biochemistry, 46 (17), pp. 5148-5159
Savickiene, J., Treigyte, G., Gineitis, A., Navakauskiene, R., (2010) Vitro Cell Dev Biol Anim, 46 (6), pp. 547-559
Sebastia, J., Cristofol, R., Martin, M., Rodriguez-Farre, E., Sanfeliu, C., (2003) Cytometry A J Int Soc Anal Cytol, 51 (1), pp. 16-25
Singh, B.R., Infrared analysis of peptides and proteins: Principles and applications (2000) ACS Symposium Series, 750. , American Chemical Society, Washington
Stevenson, K.J., Hale, G., Perham, R.N., (1978) Biochemistry, 17 (11), pp. 2189-2192
Stroffekova, K., Proenza, C., Beam, K.G., (2001) Pflugers Archiv Eur J Physiol, 442 (6), pp. 859-866
Tseng, C.H., (2004) Toxicol Appl Pharmacol, 197 (2), pp. 67-83
Vizioli, N.M., Rusell, M.L., Carbajal, M.L., Carducci, C.N., Grasselli, M., (2005) Electrophoresis, 26 (15), pp. 2942-2948
Yeh, A.P., McMillan, A., Stowell, M.H., Acta crystallographica section d (2006) Biol Crystallogr, 62 (PART 4), pp. 451-457
Zhang, X., Yang, F., Shim, J.Y., Kirk, K.L., Anderson, D.E., Chen, X., (2007) Cancer Lett, 255 (1), pp. 95-106
ISSN:15723887
DOI:10.1007/s10930-012-9441-6