An arsenic fluorescent compound as a novel probe to study arsenic-binding proteins
Arsenic-binding proteins are under continuous research. Their identification and the elucidation of arsenic/ protein interaction mechanisms are important because the biological effects of these complexes may be related not only to arsenic but also to the arsenic/protein structure. Although many prot...
Guardado en:
Autor principal: | |
---|---|
Otros Autores: | , , , , , |
Formato: | Capítulo de libro |
Lenguaje: | Inglés |
Publicado: |
2012
|
Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
Aporte de: | Registro referencial: Solicitar el recurso aquí |
Sumario: | Arsenic-binding proteins are under continuous research. Their identification and the elucidation of arsenic/ protein interaction mechanisms are important because the biological effects of these complexes may be related not only to arsenic but also to the arsenic/protein structure. Although many proteins bearing a CXXC motif have been found to bind arsenic in vivo, new tools are necessary to identify new arsenic targets and allow research on protein/ arsenic complexes. In this work, we analyzed the performance of the fluorescent compound APAO-FITC (synthesized from p-aminophenylarsenoxide, APAO, and fluorescein isothiocyanate, FITC) in arsenic/protein binding assays using thioredoxin 1 (Trx) as an arsenic-binding protein model. The Trx-APAO-FITC complex was studied through different spectroscopic techniques involving UV-Vis, fluorescence, atomic absorption, infrared and circular dichroism. Our results show that APAO-FITC binds efficiently and specifically to the Trx binding site, labeling the protein fluorescently, without altering its structure and activity. In summary, we were able to study a protein/ arsenic complex model, using APAO-FITC as a labeling probe. The use of APAO-FITC in the identification of different protein and cell targets, as well as in in vivo biodistribution studies, conformational studies of arsenicbinding proteins, and studies for the design of drug delivery systems for arsenic anti-cancer therapies, is highly promising. © Springer Science+Business Media, LLC 2012. |
---|---|
Bibliografía: | Ado, K., Taniguchi, Y., (2007) Biochim Biophys Acta, 1774 (7), pp. 813-821 Ansorge, W., Sproat, B., Stegemann, J., Schwager, C., Zenke, M., (1987) Nucleic Acids Res, 15 (11), pp. 4593-4602 Ansorge, W., Rosenthal, A., Sproat, B., Schwager, C., Stegemann, J., Voss, H., (1988) Nucleic Acids Res, 16 (5), pp. 2203-2206 Berry, F.B., Skarie, J.M., Mirzayans, F., Fortin, Y., Hudson, T.J., Raymond, V., Link, B.A., Walter, M.A., (2008) Hum Mol Genet, 17 (4), pp. 490-505 Brown, C.J., Dastidar, S.G., See, H.Y., Coomber, D.W., Ortiz-Lombardia, M., Verma, C., Lane, D.P., (2010) J Mol Biol, 395 (4), pp. 871-883 Burwell, L.S., Nadtochiy, S.M., Tompkins, A.J., Young, S., Brookes, P.S., (2006) Biochem J, 394 (PART 3), pp. 627-634 Carbajal, M.L., Espinoza, S.L.S., Valdez, S.N., Poskus, E., Smolko, E.E., Grasselli, M., (2009) React Funct Polym, 69 (11), pp. 816-820 Cleland, W.W., (1964) Biochemistry, 3, pp. 480-482 Clerico, E.M., Ermacora, M.R., (2001) Arch Biochem Biophys, 395 (2), pp. 215-224 Cline, D.J., Thorpe, C., Schneider, J.P., (2003) J Am Chem Soc, 125 (10), pp. 2923-2929 Collet, J.F., Messens, J., (2010) Antioxid Redox Signal, 13 (8), pp. 1205-1216 Coto-Garcia, A.M., Sotelo-Gonzalez, E., Fernandez-Arguelles, M.T., Pereiro, R., Costa-Fernandez, J.M., Sanz-Medel, A., (2011) Anal Bioanal Chem, 399 (1), pp. 29-42 Chen, Y., Parr, T., Holmes, A.E., Nakanishi, K., (2008) Bioconjug Chem, 19 (1), pp. 5-9 Donoghue, N., Yam, P.T., Jiang, X.M., Hogg, P.J., (2000) Protein Sci, 9 (12), pp. 2436-2445 Dorward, A., Sweet, S., Moorehead, R., Singh, G., (1997) J Bioenerg Biomembr, 29 (4), pp. 385-392 Edgington, L.E., Berger, A.B., Blum, G., Albrow, V.E., Paulick, M.G., Lineberry, N., Bogyo, M., (2009) Nat Med, 15 (8), pp. 967-973 Femia, A.L., Temprana, C.F., Amor, M.S., Grasselli, M., Alonso Sdel, V., (2012) Med Chem, 8 (2), pp. 222-229 Fernando, M.R., Nanri, H., Yoshitake, S., Nagata-Kuno, K., Minakami, S., (1992) Eur J Biochem/FEBS, 209 (3), pp. 917-922 Flora, S.J., (2011) Free Radic Biol Med, 51 (2), pp. 257-281 Fu, G.H., Wang, Y., Xi, Y.H., Guo, Z.W., Liu, X.B., Bai, S.Z., Yang, B.F., Chen, G.Q., (2005) J Drug Target, 13 (4), pp. 235-243 Ge, Y., Qi, Z., Wang, Y., Liu, X., Li, J., Xu, J., Liu, J., Shen, J., (2009) Int J Biochem Cell Biol, 41 (4), pp. 900-906 Gholivand, M.B., Ghasemi, J.B., Saaidpour, S., Mohajeri, A., (2008) Spectrochim Acta A Mol Biomol Spectrosc, 71 (3), pp. 1158-1165 Gorman, J.J., (1987) Anal Biochem, 160 (2), pp. 376-387 Griffin, B.A., Adams, S.R., Jones, J., Tsien, R.Y., (2000) Methods Enzymol, 327, pp. 565-578 Gupta, S., Yel, L., Kim, D., Kim, C., Chiplunkar, S., Gollapudi, S., (2003) Mol Cancer Ther, 2 (8), pp. 711-719 Holmgren, A., (1979) J Biol Chem, 254 (19), pp. 9627-9632 Holmgren, A., (1995) Structure, 3 (3), pp. 239-243 Jeng, M.F., Campbell, A.P., Begley, T., Holmgren, A., Case, D.A., Wright, P.E., Dyson, H.J., (1994) Structure, 2 (9), pp. 853-868 Kitchin, K.T., Wallace, K., (2006) J Biochem Mol Toxicol, 20 (1), pp. 48-56 Kitchin, K.T., Wallace, K., (2008) J Inorg Biochem, 102 (3), pp. 532-539 Laurent, T.C., Moore, E.C., Reichard, P., (1964) J Biol Chem, 239, pp. 3436-3444 Layton, C.J., Hellinga, H.W., (2010) Biochemistry, 49 (51), pp. 10831-10841 Lundstrom, J., Krause, G., Holmgren, A., (1992) J Biol Chem, 267 (13), pp. 9047-9052 Martin, S.R., Schilstra, M.J., (2008) Methods Cell Biol, 84, pp. 263-293 Miller Jr., W.H., Schipper, H.M., Lee, J.S., Singer, J., Waxman, S., (2002) Cancer Res, 62 (14), pp. 3893-3903 Mitsui, A., Hirakawa, T., Yodoi, J., (1992) Biochem Biophys Res Commun, 186 (3), pp. 1220-1226 Nakamura, H., Masutani, H., Yodoi, J., (2006) Semin Cancer Biol, 16 (6), pp. 444-451 Nakamura, H., Hoshino, Y., Okuyama, H., Matsuo, Y., Yodoi, J., (2009) Adv Drug Deliv Rev, 61 (4), pp. 303-309 Oblong, J.E., Berggren, M., Powis, G., (1994) FEBS Lett, 343 (1), pp. 81-84 Olson, E.S., Jiang, T., Aguilera, T.A., Nguyen, Q.T., Ellies, L.G., Scadeng, M., Tsien, R.Y., (2010) Proc Natl Acad Sci USA, pp. 1-6 Palaniappan, P.R., Vijayasundaram, V., (2008) Food Chem Toxicol, 46 (11), pp. 3534-3539 Ralph, S.J., (2008) Metal Based Drugs, 2008, p. 260146 Ramadan, D., Cline, D.J., Bai, S., Thorpe, C., Schneider, J.P., (2007) J Am Chem Soc, 129 (10), pp. 2981-2988 Ramadan, D., Rancy, P.C., Nagarkar, R.P., Schneider, J.P., Thorpe, C., (2009) Biochemistry, 48 (2), pp. 424-432 Santos, J., Marino-Buslje, C., Kleinman, C., Ermacora, M.R., Delfino, J.M., (2007) Biochemistry, 46 (17), pp. 5148-5159 Savickiene, J., Treigyte, G., Gineitis, A., Navakauskiene, R., (2010) Vitro Cell Dev Biol Anim, 46 (6), pp. 547-559 Sebastia, J., Cristofol, R., Martin, M., Rodriguez-Farre, E., Sanfeliu, C., (2003) Cytometry A J Int Soc Anal Cytol, 51 (1), pp. 16-25 Singh, B.R., Infrared analysis of peptides and proteins: Principles and applications (2000) ACS Symposium Series, 750. , American Chemical Society, Washington Stevenson, K.J., Hale, G., Perham, R.N., (1978) Biochemistry, 17 (11), pp. 2189-2192 Stroffekova, K., Proenza, C., Beam, K.G., (2001) Pflugers Archiv Eur J Physiol, 442 (6), pp. 859-866 Tseng, C.H., (2004) Toxicol Appl Pharmacol, 197 (2), pp. 67-83 Vizioli, N.M., Rusell, M.L., Carbajal, M.L., Carducci, C.N., Grasselli, M., (2005) Electrophoresis, 26 (15), pp. 2942-2948 Yeh, A.P., McMillan, A., Stowell, M.H., Acta crystallographica section d (2006) Biol Crystallogr, 62 (PART 4), pp. 451-457 Zhang, X., Yang, F., Shim, J.Y., Kirk, K.L., Anderson, D.E., Chen, X., (2007) Cancer Lett, 255 (1), pp. 95-106 |
ISSN: | 15723887 |
DOI: | 10.1007/s10930-012-9441-6 |