Steroid protection in aging and age-associated diseases

Neuroactive steroids are secretory products of peripheral endocrine glands that modulate a variety of brain functions. A close relationship between neuroactive steroid structure and function becomes most evident under pathological circumstances. On one side, overproduction of glucocorticoid and mine...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: De Nicola, A.F
Otros Autores: Pietranera, L., Beauquis, J., Ferrini, M.G, Saravia, F.E
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2009
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:Neuroactive steroids are secretory products of peripheral endocrine glands that modulate a variety of brain functions. A close relationship between neuroactive steroid structure and function becomes most evident under pathological circumstances. On one side, overproduction of glucocorticoid and mineralocorticoid neuroactive steroids may be detrimental to the hippocampus, which is enriched in glucocorticoid receptors (GR) and mineralocorticoid receptors (MR). Thus, a dysfunction of the adrenocortical system in aging and age-associated diseases (diabetes, hypertension) is able to cause hippocampal damage. Whereas aging and uncontrolled diabetes show a predominant GR overdrive, a MR overdrive characterizes hypertensive animals. Some abnormalities commonly found in the hippocampus of aging, diabetic and hypertensive animals include decreased neurogenesis, astrogliosis and neuronal loss in the hilus of the dentate gyrus (DG). On the other side, and in contrast to adrenal gland-derived steroids, estrogens qualify as hippocampal neuroprotectants. Given to middle-age mice, estrogens stimulated proliferation and differentiation of newborn cells in the DG, decreased astrogliosis and increased hilar neuronal number. Similar estrogen effects were obtained in mice with streptozotocin-induced diabetes and in spontaneously hypertensive rats (SHR). The results suggest that in aging and age-associated diseases, adrenocortical steroid overdrive sensitizes the hippocampus to the pathological milieu imposed by a pre-existing degeneration or illness. In this setting, estradiol neuroprotection rescues hippocampal parameters previously altered by the pathological environment. © 2008 Elsevier Inc. All rights reserved.
Bibliografía:Baulieu, E.E., Robel, P., Schumacher, M., Neurosteroids: beginning of the story (2001) Int. Rev. Neurobiol., 46, pp. 1-32
Behl, C., Estrogen as a neuroprotective hormone (2002) Nat. Rev. Neurosci., 3, pp. 433-442
Brismar, T., Maurex, L., Cooray, G., Juntti-Berggren, L., Lindström, P., Ekberg, K., Adner, N., Andersson, S., Predictors of cognitive impairment in type 1 diabetes (2007) Psychoneuroendocrinology, 32, pp. 1041-1051
Cameron, H.A., McKay, R.D., Restoring production of hippocampal neurons in old age (1999) Nat. Neurosci., 2, pp. 894-897
Darnaudery, M., Perez-Martin, M., Belizaire, G., Maccari, S., Garcia-Segura, L.M., Insulin-like growth factor 1 reduces age-related disorders induced by prenatal stress in female rats (2006) Neurobiol. Aging, 27, pp. 119-127
De Kloet, E.R., Derijk, R.H., Meijer, O.C., Therapy Insight: is there an imbalanced response of mineralocorticoid and glucocorticoid receptors in depression? (2007) Nat. Clin. Pract. Endocrinol. Metab., 3, pp. 168-179
De Nicola, A.F., Magariños, A.M., Foglia, V.G., Neuroendocrine regulation in experimental diabetes (Houssay Lecture) (1991) Diabetes, pp. 3-8. , Rifkin H., Colwell J.A., and Taylor S.I. (Eds), Elsevier Science Publishers
De Nicola, A.F., Saravia, F.E., Beauquis, J., Pietranera, L., Ferrini, M.G., Estrogens and neuroendocrine hypothalamic-pituitary-adrenal axis function (2006) Front. Horm. Res., 35, pp. 157-168
Ferrini, M., Piroli, G., Frontera, M., Falbo, A., Lima, A., De Nicola, A.F., Estrogens normalize the hypothalamic-pituitary-adrenal axis response to stress and increase glucocorticoid receptor immuno-reactivity in hippocampus of aging male rats (1999) Neuroendocrinology, 69, pp. 129-137
Funder, J.W., Aldosterone, mineralocorticoid receptors and vascular inflammation (2004) Mol. Cell. Endocrinol., 217, pp. 263-269
Garcia-Segura, L.M., Sanz, A., Mendez, P., Cross-talk between IGF-I and estradiol in the brain: focus on neuroprotection (2006) Neuroendocrinology, 84, pp. 275-279
Goodman, Y., Bruce, A.J., Cheng, B., Mattson, M.P., Estrogens attenuate and CORT exacerbates excitotoxicity, oxidative injury, and amyloid β-peptide toxicity in hippocampal neurons (1996) J. Neurochem., 66, pp. 1836-1844
Isgor, C., Watson, S.J., Estrogen receptor alpha and beta mRNA expressions by proliferating and differentiating cells in the adult rat dentate gyrus and subventricular zone (2005) Neuroscience, 134, pp. 847-856
Kempermann, G., Gast, D., Gage, F.H., Neuroplasticity in old age: sustained fivefold induction of hippocampal neurogenesis by long-term environmental enrichment (2000) Ann. Neurol., 52, pp. 135-143
Lacreuse, A., Effects of ovarian hormones on cognitive function in nonhuman primates (2006) Neuroscience, 138, pp. 859-867
Lephart, E.D., Galindo, E., Bu, L.H., Stress (hypothalamic-pituitary-adrenal axis) and pain response in male rats exposed lifelong to high vs. low phytoestrogen diets (2003) Neurosci. Lett., 342, pp. 65-68
Liu, F., Day, M., Muñiz, L.C., Bitran, D., Arias, R., Revilla-Sanchez, R., Grauer, S., Brandon, N.J., Activation of estrogen receptor-beta regulates hippocampal synaptic plasticity and improves memory (2008) Nat. Neurosci., 11, pp. 334-343
McEwen, B.S., Estrogen actions throughout the brain (2002) Rec. Progr. Horm. Res., 57, pp. 357-370
Miller, D.B., O'Callaghan, J.P., Aging, stress and the hippocampus (2005) Ageing Res. Rev., 4, pp. 123-140
Oomen, C.A., Mayer, J.L., de Kloet, E.R., Joëls, M., Lucassen, P.J., Brief treatment with the glucocorticoid receptor antagonist mifepristone normalizes the reduction in neurogenesis after chronic stress (2007) Eur. J. Neurosci., 26, pp. 3395-3401
Perez-Martin, M., Salazar, V., Castillo, C., Ariznavarreta, C., Azcoitia, I., Garcia-Segura, L.M., Tresguerres, J.A., Estradiol and soy extract increase the production of new cells in the dentate gyrus of old rats (2005) Exp. Gerontol., 40, pp. 450-453
Petersen, R.C., Jack Jr., C.R., Xu, Y.C., Waring, S.C., O'Brien, P.C., Smith, G.E., Ivnik, R.J., Kokmen, E., Memory and MRI-based hippocampal volumes in aging and AD (2000) Neurology, 54, pp. 581-587
Pietranera, L., Saravia, F., Gonzalez Deniselle, M.C., Roig, P., Lima, A., De Nicola, A.F., Abnormalities of the hippocampus are similar in deoxycorticosterone acetate-salt hypertensive rats and spontaneously hypertensive rats (2006) J. Neuroendocrinol., 18, pp. 466-474
Pietranera, L., Saravia, F.E., Roig, P., Lima, A., De Nicola, A.F., Protective effects of estradiol in the brain of rats with genetic or mineralocorticoid-induced hypertension (2008) Psychoneuroendocrinology, 33, pp. 270-281
Rahmouni, K., Barthelmebs, M., Grima, M., Imbs, J.L., De Jong, W., Involvement of brain mineralocorticoid receptor in salt-enhanced hypertension in spontaneously hypertensive rats (2001) Hypertension, 38, pp. 902-906
Resnick, S.M., Maki, P.M., Rapp, S.R., Espeland, M.A., Brunner, R., Coker, L.H., Granek, I.A., Shumaker, S.A., Women's health initiative study of cognitive aging investigators. effects of combination estrogen plus progestin hormone treatment on cognition and affect (2006) J. Clin. Endocrinol. Metab., 91, pp. 1802-1810
Sapolsky, R., Krey, L.C., McEwen, B.S., The neuroendocrinology of stress and aging: the glucocorticoid cascade hypothesis (1986) Endocr. Rev., 7, pp. 284-304
Saravia, F.E., Beauquis, J., Pietranera, L., De Nicola, A.F., Neuroprotective effects of estradiol in the hippocampus of middle age mice: involvement of neurons and glial cells (2007) Psychoneuroendocrinology, 32, pp. 480-492
Saravia, F., Revsin, Y., Lux-Lantos, V., Beauquis, J., Homo-Delarche, F., De Nicola, A.F., Oestradiol restores cell proliferation in dentate gryus and subventricular zone of streptozotocin-diabetic mice (2004) J. Neuroendocrinol., 16, pp. 704-710
Scharfman, H.E., Maclusky, N.J., Similarities between actions of estrogen and BDNF in the hippocampus: coincidence or clue? (2005) Trends Neurosci., 28, pp. 79-85
Sherwin, B.B., Henry, J.F., Brain aging modulates the neuroprotective effects of estrogen on selective aspects of cognition in women: a critical review (2008) Front. Neuroendocrinol., 29, pp. 88-113
Shughrue, P.J., Lane, M.V., Merchentaler, I., Comparative distribution of estrogen receptor α and β mRNA in the rat central nervous system (1997) J. Comp. Neurol., 388, pp. 507-525
Smith, R.G., Betancourt, L., Sun, Y., Molecular endocrinology and physiology of the aging central nervous system (2005) Endocr. Rev., 26, pp. 203-250
Tanapat, P., Hastings, N.B., Gould, E., Ovarian steroids influence cell proliferation in the dentate gyrus of the adult female rat in a dose- and time-dependent manner (2005) J. Comp. Neurol., 481, pp. 252-265
Verret, L., Trouche, S., Zerwas, M., Rampon, C., Hippocampal neurogenesis during normal and pathological aging (2007) Psychoneuroendocrinology, 32 (SUPPL. 1), pp. S26-S30
Wong, E.Y.H., Herbert, J., Roles of mineralocorticoid and glucocorticoid receptors in the regulation of progenitor proliferation in the adult hippocampus (2005) Eur. J. Neurosci., 22, pp. 785-792
ISSN:05315565
DOI:10.1016/j.exger.2008.03.005