Diffraction by dual-period gratings

The dynamical characteristics of dual-period perfectly conducting gratings are explored. Gratings with several grooves (reflection) or slits (transmission) within each period are considered. A scalar approach is proposed to derive the general characteristics of the diffracted response. It was found...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Skigin, D.C
Otros Autores: Depine, Ricardo Angel
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: OSA - The Optical Society 2007
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:The dynamical characteristics of dual-period perfectly conducting gratings are explored. Gratings with several grooves (reflection) or slits (transmission) within each period are considered. A scalar approach is proposed to derive the general characteristics of the diffracted response. It was found that compound gratings can be designed to cancel as well as to intensify a given diffraction order. These preliminary estimations for finite gratings are validated by numerical examples for infinitely periodic reflection and transmission gratings with finite thickness, performed using an extension of the rigorous modal method to compound gratings, for both polarization cases. © 2007 Optical Society of America.
Bibliografía:Ebbesen, T.W., Lezec, H.J., Ghaemi, H.F., Thio, T., Wolff, P.A., Extraordinary optical transmission through sub-wavelength hole arrays (1998) Nature, 391, pp. 667-669
Moreno, E., García-Vidal, F.J., Martín-Moreno, L., Enhanced transmission and beaming of light via photonic crystal surface modes (2004) Phys. Rev. B, 69, p. 121402
Linden, S., Hau, N., Neuberth, U., Naber, A., Wegener, M., Pereira, S., Busch, K., Kuhl, J., Near-field optical microscopy and spectroscopy of one-dimensional metallic photonic crystal slabs (2005) Phys. Rev. B, 71, p. 245119
Li, Z.S., Kan, C.X., Cai, W.P., Tunable optical properties of nanostructured-gold mesoporous-silica assembly (2003) Appl. Phys. Lett, 82, pp. 1392-1394
Schider, G., Krenn, J.R., Hohenau, A., Ditlbacher, H., Leitner, A., Aussenegg, F.R., Schaich, W.L., Boreman, G., Plasmon dispersion relation of Au and Ag nanowires (2003) Phys. Rev. B, 68, p. 155427
Wang, J.J., Deng, J., Deng, X., Liu, F., Sciortino, P., Chen, L., Nikolov, A., Graham, A., Innovative high-performance nanowire-grid polarizers and integrated isolators (2005) IEEE J. Sel. Top. Quantum Electron, 11, pp. 241-253
Sauer, G., Brehm, G., Schneider, S., Graener, H., Seifert, G., Nielsch, K., Choi, J., Wehrspohn, R.B., In situ surface-enhanced Raman spectroscopy of monodisperse silver nanowire arrays (2005) J. Appl. Phys, 97, p. 024308
Tan, W.-C., Sambles, J.R., Preist, T.W., Double-period zero-order metal gratings as effective selective absorbers (2000) Phys. Rev. B, 61, pp. 13177-13182
Hibbins, A., Sambles, J.R., Excitation of remarkably nondispersive surface plasmons on a nondiffracting, dual-pitch metal grating (2002) Appl. Phys. Lett, 80, pp. 2410-2412
Lockyear, M.J., Hibbins, A.P., Sambles, J.R., Law rence, C.R., Low angular-dispersion microwave absorption of a metal dual-period nondiffracting hexagonal grating (2005) Appl. Phys. Lett, 86, p. 184103
Lepage, J.-F., McCarthy, N., Analysis of the diffractional properties of dual-period apodizing gratings: Theoretical and experimental results (2004) Appl. Opt, 43, pp. 3504-3512
Crouse, D., Keshavareddy, P., A method for designing electromagnetic resonance enhanced silicon-on-insulator metal-semiconductor- metal photodetectors (2006) J. Opt. A, 8, p. 175181
Crouse, D., Arend, M., Zou, J., Keshavareddy, P., Numerical modeling of electromagnetic resonance enhanced silicon metal-semiconductor-metal photodetectors (2006) Opt. Express, 14, pp. 2047-2061
Crouse, D., Numerical modeling and electromagnetic resonant modes in complex grating structures and optoelectronic device applications (2005) IEEE Trans. Electron. Devices, 52, pp. 2365-2373
Veremey, V.V., Mittra, R., Scattering from structures formed by resonant elements (1998) IEEE Trans. Antennas Propag, 46, pp. 494-501
Skigin, D.C., Veremey, V.V., Mittra, R., Superdirective radiation from finite gratings of rectangular grooves (1999) IEEE Trans. Antennas Propag, 47, pp. 376-383
Uppal, J.S., Gupta, P.K., Harrison, R.G., Aperiodic ruling for the measurement of Gaussian laser beam diameters (1989) Opt. Lett, 14, pp. 683-685
Sumaya-Martínez, J., Mata-Méndez, O., Chavez-Rivas, F., Rigorous theory of the diffraction of Gaussian beams by finite gratings: TE polarization (2003) J. Opt. Soc. Am. A, 20, pp. 827-835
Mata-Méndez, O., Avendano, J., Chávez-Rivas, F., Rigorous theory of the diffraction of Gaussian beams by finite gratings: TM polarization (2006) J. Opt. Soc. Am. A, 23, pp. 1889-1896
Fantino, A.N., Grosz, S.I., Skigin, D.C., Resonant effect in periodic gratings comprising a finite number of grooves in each period (2001) Phys. Rev. E, 64, p. 016605
Grosz, S.I., Skigin, D.C., Fantino, A.N., Resonant effects in compound diffraction gratings: Influence of the geometrical parameters of the surface (2002) Phys. Rev. E, 65, p. 056619
Skigin, D.C., Fantino, A.N., Grosz, S.I., Phase resonances in compound metallic gratings (2003) J. Opt. A, 5, pp. S129-S135
Skigin, D.C., Depine, R.A., Transmission resonances in metallic compound gratings with subwavelength slits (2005) Phys. Rev. Lett, 95, p. 217402
[Paper selected for publication in the Virtual Journal of Nanoscale Science and Technology 12, (2005).]; Skigin, D.C., Depine, R.A., Resonances on metallic compound transmission gratings with subwavelength wires and slits (2006) Opt. Commun, 262, pp. 270-275
Skigin, D.C., Depine, R.A., Narrow gaps for transmission through metallic structures gratings with subwavelength slits (2006) Phys. Rev. E, 74, p. 046606
Andrewartha, J.R., Fox, J.R., Wilson, I.J., Resonance anomalies in the lamellar grating (1977) Opt. Acta, 26, pp. 69-89
Depine, R.A., Surface impedance boundary conditions used to study light scattering from metallic surfaces (1990) Scattering in Volumes and Surfaces, pp. 239-253. , M. Nieto-Vesperinas and J. C. Dainty, eds, North-Holland
Lochbihler, H., Depine, R., Diffraction from highly conducting wire gratings (1993) Appl. Opt, 32, pp. 3459-3465
Born, M., Wolf, E., (1999) Principles of Optics, , 7th ed, Cambridge U. Press
ISSN:1559128X
DOI:10.1364/AO.46.001385