Bandwidth control of forbidden transmission gaps in compound structures with subwavelength slits

Phase resonances in transmission compound structures with subwavelength slits produce sharp dips in the transmission response. For all equal slits, the wavelengths of these sharp transmission minima can be varied by changing the width or the length of all the slits. In this paper we show that the wi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Skigin, D.C
Otros Autores: Loui, H., Popovic, Z., Kuester, E.F
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2007
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 07754caa a22008537a 4500
001 PAPER-22620
003 AR-BaUEN
005 20230518205412.0
008 190411s2007 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-34547161199 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a PLEEE 
100 1 |a Skigin, D.C. 
245 1 0 |a Bandwidth control of forbidden transmission gaps in compound structures with subwavelength slits 
260 |c 2007 
270 1 0 |m Skigin, D.C.; Grupo de Electromagnetismo Aplicado, Departamento de Física, Ciudad Universitaria, Pabellón I, C1428EHA Buenos Aires, Argentina; email: dcs@df.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Goulielmakis, E., Nersisyan, G., Papadogiannis, N., Charalambidis, D., Tsakiris, G., Witte, K., (2002) Appl. Phys. B: Lasers Opt., 74, p. 197206. , APBOEM 0946-2171 
504 |a Jim Wang, J., Liu, F., Deng, X., Liu, X., Chen, L., Sciortino, P., Varghese, R., (2005) J. Vac. Sci. Technol. B, 23, p. 3164. , JVTBD9 1071-1023 10.1116/1.2127948 
504 |a Porto, J.A., García-Vidal, F.J., Pendry, J.B., (1999) Phys. Rev. Lett., 83, p. 2845. , PRLTAO 0031-9007 10.1103/PhysRevLett.83.2845 
504 |a García-Vidal, F.J., Martín-Moreno, L., (2002) Phys. Rev. B, 66, p. 155412. , PRBMDO 0163-1829 10.1103/PhysRevB.66.155412 
504 |a Xie, Y., Zakharian, A.R., Moloney, J.V., Mansuripur, M., (2005) Opt. Express, 13, p. 4485. , OPEXFF 1094-4087 10.1364/OPEX.13.004485 
504 |a Popov, E., Neviere, M., Enoch, S., Reinisch, R., (2000) Phys. Rev. B, 62, p. 16100. , PRBMDO 0163-1829 10.1103/PhysRevB.62.16100 
504 |a Ebbesen, T.W., Lezec, H.J., Ghaemi, H.F., Thio, T., Wolff, P.A., (1998) Nature (London), 391, p. 667. , NATUAS 0028-0836 10.1038/35570 
504 |a Ghaemi, H.F., Thio, T., Grupp, D.E., Ebbesen, T.W., Lezec, H.J., (1998) Phys. Rev. B, 58, p. 6779. , PRBMDO 0163-1829 10.1103/PhysRevB.58.6779 
504 |a Skigin, D.C., Depine, R.A., (2005) Phys. Rev. Lett., 95, p. 217402. , PRLTAO 0031-9007 10.1103/PhysRevLett.95.217402 
504 |a Skigin, D.C., Depine, R.A., (2006) Opt. Commun., 262, p. 270. , OPCOB8 0030-4018 10.1016/j.optcom.2006.01.006 
504 |a Skigin, D.C., Depine, R.A., (2006) Phys. Rev. e, 74, p. 046606. , PLEEE8 1063-651X 10.1103/PhysRevE.74.046606 
504 |a Petit, R., (1980) Electromagnetic Theory of Gratings, , Springer, New York 
504 |a Veremey, V.V., Mittra, R., (1998) IEEE Trans. Antennas Propag., 46, p. 494. , IETPAK 0018-926X 10.1109/8.664112 
504 |a Skigin, D.C., Veremey, V.V., Mittra, R., (1999) IEEE Trans. Antennas Propag., 47, p. 376. , IETPAK 0018-926X 10.1109/8.761078 
504 |a Fantino, A.N., Grosz, S.I., Skigin, D.C., (2001) Phys. Rev. e, 64, p. 016605. , PLEEE8 1063-651X 10.1103/PhysRevE.64.016605 
504 |a Grosz, S.I., Skigin, D.C., Fantino, A.N., (2002) Phys. Rev. e, 65, p. 056619. , PLEEE8 1063-651X 10.1103/PhysRevE.65.056619 
504 |a Skigin, D.C., Fantino, A.N., Grosz, S.I., (2003) J. Opt. A, Pure Appl. Opt., 5, p. 129. , JOAOF8 1464-4258 10.1088/1464-4258/5/5/353 
504 |a Depine, R.A., Fantino, A.N., Grosz, S.I., Skigin, D.C., (2007) Optik (Jena), 118, p. 42. , OTIKAJ 0030-4026 (Jena) 
504 |a Le Perchec, J., Quemerais, P., Barbara, A., López-Ríos, T., (2006) Phys. Rev. Lett., 97, p. 036405. , PRLTAO 0031-9007 10.1103/PhysRevLett.97.036405 
504 |a Joannopoulos, J.D., Meade, R.D., Winn, J.N., (1995) Photonic Crystals, , Princeton University Press, Princeton, NJ 
504 |a Hibbins, A.P., Hooper, I.R., Lockyear, M.J., Sambles, J.R., (2006) Phys. Rev. Lett., 96, p. 257402. , PRLTAO 0031-9007 10.1103/PhysRevLett.96.257402 
504 |a Cwik, T.A., Mittra, R., (1987) IEEE Trans. Antennas Propag., 35, p. 1397. , IETPAK 0018-926X 10.1109/TAP.1987.1144054 
504 |a Wu, T.K., (1995) Frequency Selective Surface and Grid Arrays, , Wiley, New York 
504 |a Munk, B., (2000) Frequency Selective Surfaces: Theory and Design, , Wiley, New York 
504 |a Mittra, R., Lee, S., (1971) Analytical Techniques in the Theory of Guided Waves, , Macmillan, New York 
504 |a Chen, C.-C., (1973) IEEE Trans. Microwave Theory Tech., MTT-21, p. 1. , IETMAB 0018-9480 10.1109/TMTT.1973.1127906 
504 |a Widenberg, B., (2001), TEAT-7098; Monorchio, A., Grassi, P., Manara, G., (2002) IEEE Antennas Wireless Propag. Lett., 1, p. 120123. , IAWPA7 1536-1225 
504 |a Widenberg, B., Poulsen, S., Karlsson, A., (1999), TEAT-7082; Monorchio, A., Grassi, P., Arena, D., (2004) Electromagnetics, 24, p. 49. , ETRMDV 0272-6343 
504 |a Loui, H., Kuester, E.F., Skigin, D.C., Popovic, Z., ; Loui, H., (2006), Ph.D. dissertation, University of Colorado, Boulder; Lewin, L., Chang, D.C., Kuester, E.F., (1977) Electromagnetic Waves and Curved Structures, 2. , Series IEE Electromagnetic Waves (Peter Peregrinus, Stevenage, England 
504 |a Katsenelenbaum, B.Z., Del Río, L.M., Pereyaslavets, M., Ayza, M.S., Thumm, M., (1998) Theory of Nonuniform Waveguides-The Cross-section Method, 44. , Series IEE Electromagnetic Waves IEE, London 
520 3 |a Phase resonances in transmission compound structures with subwavelength slits produce sharp dips in the transmission response. For all equal slits, the wavelengths of these sharp transmission minima can be varied by changing the width or the length of all the slits. In this paper we show that the width of the dip, i.e., the frequency range of minimum transmittance, can be controlled by making at least one slit different from the rest within a compound unit cell. In particular, we investigate the effect that a change in the dielectric filling, or in the length of a single slit, produces in the transmission response. We also analyze the scan angle behavior of these structures by means of band diagrams and compare them with previous results for all-equal slit structures. © 2007 The American Physical Society.  |l eng 
593 |a Grupo de Electromagnetismo Aplicado, Departamento de Física, Ciudad Universitaria, Pabellón I, C1428EHA Buenos Aires, Argentina 
593 |a Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185-1330, United States 
593 |a Department of Electrical and Computer Engineering, University of Colorado, Boulder, CO 80309-0425, United States 
593 |a Consejo Nacional de Investigaciones Científicas y T́cnicas (CONICET), Av. Rivadavia 1917, C1033AAJ, Buenos Aires, Argentina 
690 1 0 |a BAND STRUCTURE 
690 1 0 |a BANDWIDTH 
690 1 0 |a DIELECTRIC MATERIALS 
690 1 0 |a OPTIMIZATION 
690 1 0 |a WAVELENGTH 
690 1 0 |a BANDWIDTH CONTROL 
690 1 0 |a COMPOUND STRUCTURES 
690 1 0 |a TRANSMISSION GAPS 
690 1 0 |a TRANSMISSION MINIMA 
690 1 0 |a MOLECULAR STRUCTURE 
700 1 |a Loui, H. 
700 1 |a Popovic, Z. 
700 1 |a Kuester, E.F. 
773 0 |d 2007  |g v. 76  |k n. 1  |p Phys. Rev. E Stat. Nonlinear Soft Matter Phys.  |x 15393755  |t Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-34547161199&doi=10.1103%2fPhysRevE.76.016604&partnerID=40&md5=f2177d833b0d6ae9adec1995b38374ed  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1103/PhysRevE.76.016604  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_15393755_v76_n1_p_Skigin  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15393755_v76_n1_p_Skigin  |y Registro en la Biblioteca Digital 
961 |a paper_15393755_v76_n1_p_Skigin  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 83573