Accuracy of several multidimensional refinable distributions

Compactly supported distributions f1,..., fr on 9d are refinable if each fi is a finite linear combination of the reseated and translated distributions fj (Ax -k), where the translates k are taken along a lattice Γ ⊂ Rd and A is a dilation matrix that expansively maps Γ into itself. Refinable distri...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Cabrelli, C.
Otros Autores: Heil, C., Molter, U.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2000
Acceso en línea:Registro en Scopus
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:Compactly supported distributions f1,..., fr on 9d are refinable if each fi is a finite linear combination of the reseated and translated distributions fj (Ax -k), where the translates k are taken along a lattice Γ ⊂ Rd and A is a dilation matrix that expansively maps Γ into itself. Refinable distributions satisfy a refinement equation f(x) = ∑k∈Λ ck f(Ax-k), where Λ is a finite subset of Γ, the ck are r × r matrices, and f = (f1,..., fr)T. The accuracy of f is the highest degree p such that all multivariate polynomials q with degree(q) < p are exactly reproduced from linear combinations of translates of f1,..., fr along the lattice Γ. We determine the accuracy p from the matrices ck. Moreover, we determine explicitly the coefficients yα,i(k) such that xα = ∑i=1 r ∑k∈Gamma; yα,i fi(x + k). These coefficients are multivariate polynomials yα,i(x) of degree |α| evaluated at lattice points k ∈ Γ. © 2000 Birkhäuser Boston. All rights reserved.
Bibliografía:De Boor, C., Quasiinterpolants and approximation power of multivariate splines (1990) Computation of Curves and Surfaces, pp. 313-345. , Gasca, M. and Michelli, C.A., Eds., Kluwer Academic Publishers, The Netherlands
De Boor, C., Ron, A., The exponentials in the span of the integer translates of a compactly supported function (1992) J. London Math. Soc., 45, pp. 519-535
De Boor, C., De Vore, R., Ron, A., Approximation from shift-invariant subspaces of L2(Rd) (1994) Trans. Am. Math. Soc., 341, pp. 787-806
Cabrelli, C., Heil, C., Molter, U., Accuracy of lattice translates of several multidimensional refinable functions (1998) J. Approx. Th., 95, pp. 5-52
Cabrelli, C., Heil, C., Molter, U., (1999) Self-similarity and Multiwavelets in Higher Dimensions, , preprint
Cavaretta, A., Dahmen, W., Micchelli, C.A., Stationary Subdivision (1991) Mem. Am. Math. Soc., 93, pp. 1-186
Daubechies, I., (1992) Ten Lectures on Wavelets, , SIAM, Philadelphia, PA
Han, B., Jia, R.-Q., Multivariate refinement equations and subdivision schemes (1998) SIAM J. Math. Anal., 29, pp. 1177-1199
Heil, C., Strang, G., Strela, V., Approximation by translates of refinable functions (1996) Numerische Math., 73, pp. 75-94
Hutchinson, J., Fractals and self-similarity (1981) Indiana Univ. Math. J., 30, pp. 713-747
Jia, R.-Q., The subdivision and transition operators associated with a refinement equation (1996) Advanced Topics in Multivariate Approximation, (Montecatini Terme, 1995), pp. 139-154. , Fontanella, F., Jetter, K., and Laurent, P.-J., Eds., World Scientific, River Edge, NJ
Jia, R.-Q., Approximation properties of multivariate wavelets (1998) Math. Comp., 67, pp. 647-665
Jia, R.-Q., Riemenschneider, S.D., Zhou, D.X., Approximation by multiple refinable functions (1997) Canad. J. Math., 49, pp. 944-962
Jiang, Q., Multivariate matrix refinable functions with arbitrary matrix dilation (1999) Trans. Am. Math. Soc., 351, pp. 2407-2438
Plonka, G., Approximation order provided by refinable function vectors (1997) Constr. Approx., 13, pp. 221-244
Rudin, W., (1991) Functional Analysis, Second Edition, , McGraw-Hill, New York
ISSN:10695869