Mineralocorticoid treatment upregulates the hypothalamic vasopressinergic system of spontaneously hypertensive rats

Mineralocorticoid effects in the brain include the control of cardiovascular functions, induction of salt appetite, interaction with the vasoactive neuropeptides arginine vasopressin (AVP) and angiotensin II and development or aggravation of hypertension. In this regard, mineralocorticoids may play...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Pietranera, L.
Otros Autores: Saravia, F., Roig, P., Lima, A., De Nicola, A.F
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2004
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:Mineralocorticoid effects in the brain include the control of cardiovascular functions, induction of salt appetite, interaction with the vasoactive neuropeptides arginine vasopressin (AVP) and angiotensin II and development or aggravation of hypertension. In this regard, mineralocorticoids may play a pathogenic role in rats with a genetic form of hypertension (spontaneously hypertensive rats, SHR). Our objective was to compare the response of the hypothalamic vasopressinergic system to mineralocorticoid administration in SHR and control Wistar-Kyoto (WKY) rats. Sixteen-week-old male SHR showing a systolic blood pressure of 190 ± 5 mm Hg and normotensive WKY rats (130 ± 5 mm Hg) were treated subcutaneously with oil vehicle or a single 10-mg dose of deoxycorticosterone acetate (DOCA). After 2 h, rats were sacrificed and brains prepared for immunocytochemistry of Fos and vasopressin V1a receptor (V1aR) and for non-isotopic in situ hybridization of AVP mRNA. In the basal state, SHR demonstrated a higher number of AVP mRNA- and V1aR-immunopositive cells in the magno-cellular division of the paraventricular hypothalamic nucleus (PVN) than WKY rats. After DOCA injection, SHR responded with a significant increase in both parameters with respect to vehicle-injected SHR. In WKY rats, DOCA was without effect on AVP mRNA although it increased the number of V1aR-positive cells. Changes in the number of Fos-positive nuclei were measured in the PVN, median preoptic nucleus (MnPO) and organum vasculosum of the lamina terminalis (OVLT), a circumventricular region showing anatomical connections with the PVN. In vehicle-injected rats, the PVN of SHR showed a higher number of Fos-positive nuclei than in WKY rats, whereas after DOCA treatment, a significant increment occurred in the OVLT but not in the PVN or MnPO of the SHR group only. These data suggest that the enhanced response of the vasopressinergic system to mineralocorticoids may contribute to the abnormal blood pressure of SHR. Copyright © 2004 S. Karger AG, Basel.
Bibliografía:Joels, M., De Kloet, E.R., Control of neuronal excitability by corticosteroid hormones (1992) Trends Neurosci, 15, pp. 25-30
McEwen, B.S., Lambdin, L.T., Rainbow, T.C., De Nicola, A.F., Aldosterone effects on salt appetite in adrenalectomized rats (1986) Neuroendocrinology, 43, pp. 38-43
Mondadori, C., Hausler, A., Aldosterone receptors are involved in the mediation of the memory-enhancing effects of piracetam (1990) Brain Res, 524, pp. 203-207
Ratka, A., Sutanto, W., Bloemers, M., De Kloet, E.R., On the role of brain mineralocorticoid (type I) and glucocorticoid (type II) receptors in neuroendocrine regulation (1989) Neuroendocrinology, 50, pp. 117-123
Ahima, R., Krozowski, Z., Harlan, R., Type I corticosteroid receptor-like immunoreactivity in the rat CNS: Distribution and regulation by corticosteroids (1991) J Comp Neurol, 313, pp. 522-538
Pietranera, L., Saravia, F., McEwen, B.S., Lucas, L.L., Johnson, A.K., De Nicola, A.F., Changes in Fos expression in various brain regions during deoxycorticosterone acetate treatment: Relation to salt appetite, vasopressin mRNA and the mineralocorticoid receptor (2001) Neuroendocrinology, 74, pp. 396-406
Boldyreff, B., Wehling, M., Rapid aldosterone actions: From the membrane to signalling cascades to gene transcription and physiological effects (2003) J Steroid Biochem Mol Biol, 85, pp. 375-381
Lucas, L.R., Pompei, P., McEwen, B.S., Effects of deoxycorticosterone acetate and diazepam on neuropeptidergic neurons in rat striatum (1997) Neuroreport, 8, pp. 811-816
Van Den Berg, D.T.W.M., De Jong, W., De Kloet, E.R., Mineralocorticoid antagonists inhibit stress-induced blood pressure response after repeated daily warming (1994) Am J Physiol, 267, pp. E921-E926
Hashimoto, K., Makino, S., Hirasawa, R., Takao, T., Sugawara, M., Murakami, K., Ono, K., Ota, Z., Abnormalities in the hypothalamic-pituitary-adrenal axis in spontaneously hypertensive rats during development of hypertension (1989) Endocrinology, 125, pp. 1161-1167
Gomez, F., Lahmame, A., De Kloet, E.R., Armario, A., Hypothalamic-pituitary-adrenal response to chronic stress in five inbred rat strains: Differential responses are mainly located at the adrenocortical level (1996) Neuroendocrinology, 63, pp. 327-337
Rahmouni, K., Barthelmebs, M., Grima, M., Imbs, J.L., De Jong, W., Involvement of brain mineralocorticoid receptor in salt-enhanced hypertension in spontaneously hypertensive rats (2001) Hypertension, 38, pp. 902-906
Kenyon, C.J., De Conti, G.A., Cupolo, N.A., Morris, D.J., The role of aldosterone in the development of hypertension in spontaneously hypertensive rats (1981) Endocrinology, 109, pp. 1841-1845
Sutanto, W., Oitzl, M.S., Rots, N.Y., Schobitz, B., Van Den Berg, D.T., Van Dijken, H.H., Mos, J., Koolhaas, J.M., Corticosteroid receptor plasticity in the central nervous system of various rat models (1992) Endocr Regul, 26, pp. 111-118
Konishi, A., Tazawa, C., Miki, Y., Darnel, A.D., Suzuki, T., Ohta, Y., Suzuki, T., Sasano, H., The possible roles of mineralocorticoid receptor and 11β- hydroxysteroid dehydrogenase type 2 in cardiac fibrosis in the spontaneously hypertensive rat (2003) J Steroid Biochem Mol Biol, 85, pp. 439-442
Mirshahi, M., Nicolas, C., Agarwal, M.K., Enhanced activation of the mineralocorticoid receptor in genetically hypertensive rats (1998) Biochem Biophys Res Commun, 244, pp. 120-125
Imaki, T., Naruse, M., Harada, S., Chikada, N., Nakahuma, N., Yoshimoto, T., Demura, H., Stress-induced changes of gene expression in the paraventricular nucleus is enhanced in spontaneously hypertensive rats (1998) J Neuroendocrinol, 10, pp. 633-643
Ciriello, J., Kline, R.L., Zhang, T.X., Caverson, M.M., Lesions of the paraventricular nucleus after the development of spontaneous hypertension in the rat (1984) Brain Res, 310, pp. 355-359
Allen, A.M., Inhibition of the hypothalamic paraventricular nucleus in spontaneously hypertensive rats dramatically reduces sympathetic vasomotor tone (2002) Hypertension, 39, pp. 275-280
Antoni, F.A., Vasopressinergic control of pituitary adrenocorticotropin secretion comes of age (1993) Front Neuroendocrinol, 14, pp. 76-122
De Wandener, H.E., The hypothalamus and hypertension (2001) Physiol Rev, 81, pp. 1599-1658
Krukoff, T.L., MacTavish, D., Jhamandas, J.H., Hypertensive rats exhibit heightened expression of corticotropin- releasing factor in activated central neurons in response to restraint stress (1999) Brain Res Mol Brain Res, 65, pp. 70-79
Goncharuk, V.D., Van Heerikhuize, J., Swaab, D., Buijs, R., Paraventricular nucleus of the human hypothalamus in primary hypertension: Activation of corticotropin-releasing hormone neurons (2002) J Comp Neurol, 443, pp. 321-331
Van Tol, H.H., Van Den Buuse, M., De Jong, W., Burbach, J.P., Vasopressin and oxytocin gene expression in the supraoptic and paraventricular nucleus of the spontaneously hypertensive rat during development of hypertension (1988) Brain Res, 464, pp. 303-311
Burrell, L.M., Phillips, P.A., Risvanis, J., Aldred, K.L., Hutchins, A.M., Johnston, C.I., Attenuation of genetic hypertension after short-term vasopressin V1A receptor antagonism (1995) Hypertension, 26, pp. 828-834
Hurbin, A., Boissin-Agasse, L., Orcel, H., Rabié, A., Joux, N., Desarrménien, G., Richard, P., Moos, F.C., The V1a and V1b, but not the V2, vasopressin receptor genes are expressed in the supraoptic nucleus of the rat hypothalamus, and the transcripts are essentially colocalized in the vasopressinergic magnocellular neurons (1998) Endocrinology, 139, pp. 4701-4707
Hurbin, A., Orcel, H., Alonso, G., Moos, F., Rabié, A., The vasopressin receptors colocalize with vasopressin in the magnocellular neurons of the supraoptic nucleus and are modulated by water balance (2002) Endocrinology, 143, pp. 456-466
Grillo, C., Saravia, F., Ferrini, M., Piroli, G., Roig, P., Garcia, S., De Kloet, E.R., De Nicola, A.F., Increased expression of magnocellular vasopressin mRNA in rats with DOCA-induced salt appetite (1998) Neuroendocrinology, 68, pp. 105-115
Saravia, F., Grillo, C., Ferrini, M., Roig, P., Lima, A., De Kloet, E.R., De Nicola, A.F., Changes of hypothalamic and plasma vasopressin in rats with deoxycorticosterone-acetate induced salt appetite (1999) J Steroid Biochem Mol Biol, 70, pp. 47-57
Swords, B.H., Wyss, J.M., Berecek, K.H., Central vasopressin receptors are upregulated by deoxycorticosterone acetate (1991) Brain Res, 559, pp. 10-16
Kovács, K., c-Fos as a transcription factor: A stressful (re)view from a functional map (1998) Neurochem Int, 33, pp. 287-297
Landry, M., Roche, D., In situ hybridization: Methods and application to the multiple labelling (1994) EMBO Course on Basic Methods in Molecular Neuroanatomy, , Université Pierre & Marie Curie CNRS
Ivell, R., Richter, D., Structure and comparison of the oxytocin and vasopressin genes from the rat (1984) Proc Natl Acad Sci USA, 81, pp. 2006-2010
Saravia, F.E., Gonzalez, S.L., Roig, P., Alves, V., Homo-Delarche, F., De Nicola, A.F., Diabetes increases the expression of hypothalamic neuropeptides in a spontaneous model of type 1 diabetes, the nonobese diabetic mouse (2001) Cell Mol Neurobiol, 21, pp. 15-28
Kc, P., Haxhiu, M.A., Tolentino-Silva, F.P., Wu, M., Trouth, C.O., Mack, S.O., Paraventricular vasopressin-containing neurons project to brain stem and spinal cord respiratory-related sites (2002) Respir Physiol Neurobiol, 133, pp. 75-88
Xu, Z., Johnson, A.K., Central renin injections: Effects on drinking and expression of immediate early genes (1998) Brain Res, 782, pp. 24-35
Paxinos, G., Watson, C., (1982) The Rat Brain in Stereotaxic Coordinates, , Sydney, Academic Press
Gutkind, J.S., Kurihara, M., Castren, E., Saavedra, J.M., Increased concentration of angiotensin II binding sites in selected brain areas of spontaneously hypertensive rats (1988) J Hypertens, 6, pp. 79-84
Chamorro, V., Moreno, J.M., Wangensteen, R., Sainz, J., Rodrigeuz-Gomez, I., Osuna, A., Vargas, F., Effects of deoxycorticosterone on renal vascular reactivity and flow-pressure curve in spontaneously hypertensive rats (2004) J Physiol Pharmacol, 55, pp. 17-26
Miyakubo, H., Hayashi, Y., Tanaka, J., Enhanced response of subfornical organ neurons projecting to the hypothalamic paraventricular nucleus to angiotensin II in spontaneously hypertensive rats (2002) Anat Neurosci, 95, pp. 131-136
Yongue, B.G., Angulo, J.A., McEwen, B.S., Myers, M.M., Brain and liver angiotensinogen messenger RNA in genetic hypertensive and normotensive rats (1991) Hypertension, 17, pp. 485-491
Phillips, M.I., Angiotensin in the brain (1987) Annu Rev Physiol, 49, pp. 413-435
Hügin-Flores, M.E., Steimer, T., Auber, M.L., Schulz, P., Mineralo- and glucocorticoid receptor mRNAs are differently regulated by corticosterone in the rat hippocampus and anterior pituitary (2004) Neuroendocrinology, 79, pp. 174-184
Birmingham, M.K., Sar, M., Stumpf, W.E., Localization of aldosterone and corticosterone in the central nervous system, assessed by quantitative autoradiography (1984) Neurochem Res, 9, pp. 331-348
De Kloet, E.R., Sutanto, W., Van Den Bergh, D., Carey, M.P., Van Haarst, A.D., Hornsby, C.D., Meijer, O.C., Oitzl, M., Brain mineralocorticoid receptor diversity: Functional implications (1993) J Steroid Biochem Mol Biol, 47, pp. 183-190
Sakai, R.R., McEwen, B.S., Fluharty, S.J., Na, L.Y., The amygdala: Site of genomic and nongenomic arousal of aldosterone-induced salt intake (2000) Kidney Int, 57, pp. 1337-1345
Lucas, L.R., Pompei, P., McEwen, B.S., Salt appetite in salt-replete rats: Involvement of mesolimbic structures in deoxycorticosterone-induced salt craving behaviour (2000) Neuroendocrinology, 71, pp. 386-395
Johnson, A.K., Cunningham, J.T., Thunhorst, R.L., Integrative role of the lamina terminalis in the regulation of cardiovascular and body fluid homeostasis (1996) Clin Exp Pharmacol Physiol, 23, pp. 183-191
McKinley, M.J., Gerstberger, R., Mathai, M.L., Oldfield, B.J., Schmid, H., The lamina terminalis and its role in fluid and electrolyte homeostasis (1999) J Clin Neurosci, 6, pp. 289-301
Horn, E.M., Shonis, C.A., Holzwarth, M.A., Waldrop, T.G., Decrease in glutamic acid decarboxylase level in the hypothalamus of spontaneously hypertensive rats (1998) J Hypertension, 16, pp. 625-633
Angulo, J.A., Ledoux, M., McEwen, B.S., Genomic effects of cold and isolation stress on magnocellular vasopressin mRNA-containing cells in the hypothalamus of the rat (1991) J Neurochem, 23, pp. 2033-2038
Sabbatini, M., Strocchi, P., Vitaioli, L., Amenta, P., The hippocampus in spontaneously hypertensive rats: A quantitative microanatomical study (2000) Neuroscience, 100, pp. 251-258
Perfilieva, E., Risedal, A., Nyberg, J., Johansson, B.B., Eriksson, P.S., Gender and strain influence on neurogenesis in dentate gyrus of young rats (2001) J Cereb Blood Flow Metab, 21, pp. 211-217
Herman, J.P., Schafer, M.K., Young, E.A., Thompson, R., Doiuglass, J., Akil, H., Watson, S.J., Evidence for hippocampal regulation of neuroendocrine neurones of the hypothalamic-pituitary-adrenocortical axis (1989) J Neurosci, 9, pp. 3071-3082
Sofroniew, M.V., Schrel, U., Evidence for a direct projection from oxytocin and vasopressin neurons in the hypothalamic paraventricular nucleus to the medulla oblongata: Immunohistochemical visualization of both the horseradish peroxidase transported and the peptide produced by the same neurons (1981) Neurosci Lett, 22, pp. 211-214
Rowland, N.E., Bain-Han, L., Fregly, M.J., Smith, G.C., Fos induced in brain of spontaneously hypertensive rats by angiotensin II and co-localization with AT-1 receptors (1995) Brain Res, 675, pp. 127-134
ISSN:00283835
DOI:10.1159/000081314