Free energy of solid solutions and phase diagrams via quasiharmonic lattice dynamics
We show how a configurational lattice dynamics technique, in which the free energy of a number of configurations is determined directly by means of a fully dynamic structural minimization, can be used to calculate thermodynamic properties of solid solutions and phase diagrams. No assumptions are mad...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | , , , , , |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
2001
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| Sumario: | We show how a configurational lattice dynamics technique, in which the free energy of a number of configurations is determined directly by means of a fully dynamic structural minimization, can be used to calculate thermodynamic properties of solid solutions and phase diagrams. No assumptions are made as to the nature of the solution and both configurational and vibrational entropy contributions are determined directly. Only a small number of configurations are required. We illustrate the method using MnO/MgO, for which our results support the recent experiments of Wood, Hackler, and Dobson [Contrib. Mineral. Petrol. 115, 438 (1994)] who, in contrast to previous workers, suggest the formation of a complete solid solution at temperatures only above 1100 K. © 2001 The American Physical Society. |
|---|---|
| Bibliografía: | De Fontaine, D., (1994) Solid State Phys, 47, p. 33 Taylor, M.B., Barrera, G.D., Allan, N.L., Barron, T.H.K., (1997) Phys. Rev. B, 56 (14), p. 380 Raghavan, S., (1977) Ph.D. Thesis, Indian Institute of Science, , Bangalore, India Gripenberg, H., Seetharaman, S., Staffansson, L.-I., (1978) Chem. Scr, 13, p. 162 De Villiers, J.P.R., Buseck, P.R., Steyn, H.S., (1998) Miner. Mag, 62, p. 333 Raghavan, S., Iyengar, G.N.K., Abraham, K.P., (1985) J. Chem. Thermodyn, 17, p. 585 Wood, B.J., Hackler, R.T., Dobson, D.P., (1994) Contrib. Mineral. Petrol, 115, p. 438 Heath, K.D., Mackrodt, W.C., Saunders, V.R., Causà, M., (1994) J. Mater. Chem, 4, p. 825 Königstein, M., Corà, F., Catlow, C.R.A., (1998) J. Solid State Chem, 137, p. 261 Lewis, G.V., Catlow, C.R.A., (1985) J. Phys. C: Solid State Phys, 18, p. 1149 Purton, J.A., Blundy, J.D., Taylor, M.B., Barrera, G.D., Allan, N.L., (1998) Chem. Commun. (Cambridge), p. 627 Allan, N.L., Barrera, G.D., Lavrentiev, M.Y., Todorov, I.T., Purton, J.A., (2001) J. Mater. Chem, 11, p. 63 Taylor, M.B., Barrera, G.D., Allan, N.L., Barron, T.H.K., Mackrodt, W.C., (1997) Faraday Discuss, 106, p. 377 Thompson, J.B., (1967) Researches in Geochemistry, 2, p. 340. , P. H. Abelson (Wiley, New York |
| ISSN: | 10980121 |
| DOI: | 10.1103/PhysRevB.63.094203 |