Free energy of solid solutions and phase diagrams via quasiharmonic lattice dynamics

We show how a configurational lattice dynamics technique, in which the free energy of a number of configurations is determined directly by means of a fully dynamic structural minimization, can be used to calculate thermodynamic properties of solid solutions and phase diagrams. No assumptions are mad...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Allan, N.L
Otros Autores: Barrera, G.D, Fracchia, R.M, Lavrentiev, M.Yu, Taylor, M.B, Todorov, I.T, Purton, J.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2001
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:We show how a configurational lattice dynamics technique, in which the free energy of a number of configurations is determined directly by means of a fully dynamic structural minimization, can be used to calculate thermodynamic properties of solid solutions and phase diagrams. No assumptions are made as to the nature of the solution and both configurational and vibrational entropy contributions are determined directly. Only a small number of configurations are required. We illustrate the method using MnO/MgO, for which our results support the recent experiments of Wood, Hackler, and Dobson [Contrib. Mineral. Petrol. 115, 438 (1994)] who, in contrast to previous workers, suggest the formation of a complete solid solution at temperatures only above 1100 K. © 2001 The American Physical Society.
Bibliografía:De Fontaine, D., (1994) Solid State Phys, 47, p. 33
Taylor, M.B., Barrera, G.D., Allan, N.L., Barron, T.H.K., (1997) Phys. Rev. B, 56 (14), p. 380
Raghavan, S., (1977) Ph.D. Thesis, Indian Institute of Science, , Bangalore, India
Gripenberg, H., Seetharaman, S., Staffansson, L.-I., (1978) Chem. Scr, 13, p. 162
De Villiers, J.P.R., Buseck, P.R., Steyn, H.S., (1998) Miner. Mag, 62, p. 333
Raghavan, S., Iyengar, G.N.K., Abraham, K.P., (1985) J. Chem. Thermodyn, 17, p. 585
Wood, B.J., Hackler, R.T., Dobson, D.P., (1994) Contrib. Mineral. Petrol, 115, p. 438
Heath, K.D., Mackrodt, W.C., Saunders, V.R., Causà, M., (1994) J. Mater. Chem, 4, p. 825
Königstein, M., Corà, F., Catlow, C.R.A., (1998) J. Solid State Chem, 137, p. 261
Lewis, G.V., Catlow, C.R.A., (1985) J. Phys. C: Solid State Phys, 18, p. 1149
Purton, J.A., Blundy, J.D., Taylor, M.B., Barrera, G.D., Allan, N.L., (1998) Chem. Commun. (Cambridge), p. 627
Allan, N.L., Barrera, G.D., Lavrentiev, M.Y., Todorov, I.T., Purton, J.A., (2001) J. Mater. Chem, 11, p. 63
Taylor, M.B., Barrera, G.D., Allan, N.L., Barron, T.H.K., Mackrodt, W.C., (1997) Faraday Discuss, 106, p. 377
Thompson, J.B., (1967) Researches in Geochemistry, 2, p. 340. , P. H. Abelson (Wiley, New York
ISSN:10980121
DOI:10.1103/PhysRevB.63.094203