Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes

We introduce MINFLUX, a concept for localizing photon emitters in space. By probing the emitter with a local intensity minimum of excitation light, MINFLUX minimizes the fluorescence photons needed for high localization precision. In our experiments, 22 times fewer fluorescence photons are required...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Balzarotti, F.
Otros Autores: Eilers, Y., Gwosch, K.C, Gynnå, A.H, Westphal, V., Stefani, F.D, Elf, J., Hell, S.W
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: American Association for the Advancement of Science 2017
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:We introduce MINFLUX, a concept for localizing photon emitters in space. By probing the emitter with a local intensity minimum of excitation light, MINFLUX minimizes the fluorescence photons needed for high localization precision. In our experiments, 22 times fewer fluorescence photons are required as compared to popular centroid localization. In superresolution microscopy, MINFLUX attained ∼1-nanometer precision, resolving molecules only 6 nanometers apart. MINFLUX tracking of single fluorescent proteins increased the temporal resolution and the number of localizations per trace by a factor of 100, as demonstrated with diffusing 30S ribosomal subunits in living Escherichia coli. As conceptual limits have not been reached, we expect this localization modality to break new ground for observing the dynamics, distribution, and structure of macromolecules in living cells and beyond. © 2017, American Association for the Advancement of Science. All rights reserved.
Bibliografía:Hell, S.W., Wichmann, J., (1994) Opt. Lett., 19, pp. 780-782
Klar, T.A., Jakobs, S., Dyba, M., Egner, A., Hell, S.W., (2000) Proc. Natl. Acad. Sci. U.S.A., 97, pp. 8206-8210
Betzig, E., (2006) Science, 313, pp. 1642-1645
Rust, M.J., Bates, M., Zhuang, X., (2006) Nat. Methods, 3, pp. 793-796
Hess, S.T., Girirajan, T.P.K., Mason, M.D., (2006) Biophys. J., 91, pp. 4258-4272
Hell, S.W., (2007) Science, 316, pp. 1153-1158
Deschout, H., (2014) Nat. Methods, 11, pp. 253-266
Heisenberg, W., (1930) The Physical Principles of the Quantum Theory, , Univ. of Chicago Press, Chicago
Bobroff, N., (1986) Rev. Sci. Instrum., 57, pp. 1152-1157
Thompson, R.E., Larson, D.R., Webb, W.W., (2002) Biophys. J., 82, pp. 2775-2783
Mortensen, K.I., Churchman, L.S., Spudich, J.A., Flyvbjerg, H., (2010) Nat. Methods, 7, pp. 377-381
Engelhardt, J., (2011) Nano Lett., 11, pp. 209-213
Lew, M.D., Backlund, M.P., Moerner, W.E., (2013) Nano Lett, 13, pp. 3967-3972
Yildiz, A., (2003) Science, 300, pp. 2061-2065
Elf, J., Li, G.-W., Xie, X.S., (2007) Science, 316, pp. 1191-1194
Kusumi, A., Tsunoyama, T.A., Hirosawa, K.M., Kasai, R.S., Fujiwara, T.K., (2014) Nat. Chem. Biol., 10, pp. 524-532
Sahl, S.J., Leutenegger, M., Hilbert, M., Hell, S.W., Eggeling, C., (2010) Proc. Natl. Acad. Sci. U.S.A., 107, pp. 6829-6834
Vogelsang, J., (2008) Angew. Chem. Int. Ed. Engl., 47, pp. 5465-5469
Zheng, Q., (2014) Chem. Soc. Rev., 43, pp. 1044-1056
Weisenburger, S., (2014) ChemPhysChem, 15, pp. 763-770
Sharonov, A., Hochstrasser, R.M., (2006) Proc. Natl. Acad. Sci. U.S.A., 103, pp. 18911-18916
Dai, M., Jungmann, R., Yin, P., (2016) Nat. Nanotechnol., 11, pp. 798-807
Pellegrotti, J.V., (2014) Nano Lett, 14, pp. 2831-2836
Sanamrad, A., (2014) Proc. Natl. Acad. Sci. U.S.A, 111, pp. 11413-11418
Hell, S.W., (2015) Angew. Chem. Int. Ed. Engl., 54, pp. 8054-8066
Hell, S.W., Method of and apparatus for tracking a particle, particularly a single molecule, in a sample (2013), Patent application WO, published 23 May; Hell, S.W., High-resolution fluorescence microscopy with a structured excitation beam (2015), Patent application WO, published 2 July; Schmied, J.J., (2012) Nat. Methods, 9, pp. 1133-1134
Dempsey, G.T., Vaughan, J.C., Chen, K.H., Bates, M., Zhuang, X., (2011) Nat. Methods, 8, pp. 1027-1036
McKinney, S.A., Murphy, C.S., Hazelwood, K.L., Davidson, M.W., Looger, L.L., (2009) Nat. Methods, 6, pp. 131-133
Vestergaard, C.L., (2016) Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 94
Michalet, X., Berglund, A.J., (2012) Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 85
Schuler, B., Lipman, E.A., Eaton, W.A., (2002) Nature, 419, pp. 743-747
Pertsinidis, A., Zhang, Y., Chu, S., (2010) Nature, 466, pp. 647-651
Voie, A.H., Burns, D.H., Spelman, F.A., (1993) J. Microsc., 170, pp. 229-236
Ashkin, A., Dziedzic, J.M., Bjorkholm, J.E., Chu, S., (1986) Opt. Lett., 11, pp. 288-290
Cohen, A.E., Moerner, W.E., (2005) Appl. Phys. B, 86
ISSN:00368075
DOI:10.1126/science.aak9913