Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes
We introduce MINFLUX, a concept for localizing photon emitters in space. By probing the emitter with a local intensity minimum of excitation light, MINFLUX minimizes the fluorescence photons needed for high localization precision. In our experiments, 22 times fewer fluorescence photons are required...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | , , , , , , |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
American Association for the Advancement of Science
2017
|
| Materias: | |
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| Sumario: | We introduce MINFLUX, a concept for localizing photon emitters in space. By probing the emitter with a local intensity minimum of excitation light, MINFLUX minimizes the fluorescence photons needed for high localization precision. In our experiments, 22 times fewer fluorescence photons are required as compared to popular centroid localization. In superresolution microscopy, MINFLUX attained ∼1-nanometer precision, resolving molecules only 6 nanometers apart. MINFLUX tracking of single fluorescent proteins increased the temporal resolution and the number of localizations per trace by a factor of 100, as demonstrated with diffusing 30S ribosomal subunits in living Escherichia coli. As conceptual limits have not been reached, we expect this localization modality to break new ground for observing the dynamics, distribution, and structure of macromolecules in living cells and beyond. © 2017, American Association for the Advancement of Science. All rights reserved. |
|---|---|
| Bibliografía: | Hell, S.W., Wichmann, J., (1994) Opt. Lett., 19, pp. 780-782 Klar, T.A., Jakobs, S., Dyba, M., Egner, A., Hell, S.W., (2000) Proc. Natl. Acad. Sci. U.S.A., 97, pp. 8206-8210 Betzig, E., (2006) Science, 313, pp. 1642-1645 Rust, M.J., Bates, M., Zhuang, X., (2006) Nat. Methods, 3, pp. 793-796 Hess, S.T., Girirajan, T.P.K., Mason, M.D., (2006) Biophys. J., 91, pp. 4258-4272 Hell, S.W., (2007) Science, 316, pp. 1153-1158 Deschout, H., (2014) Nat. Methods, 11, pp. 253-266 Heisenberg, W., (1930) The Physical Principles of the Quantum Theory, , Univ. of Chicago Press, Chicago Bobroff, N., (1986) Rev. Sci. Instrum., 57, pp. 1152-1157 Thompson, R.E., Larson, D.R., Webb, W.W., (2002) Biophys. J., 82, pp. 2775-2783 Mortensen, K.I., Churchman, L.S., Spudich, J.A., Flyvbjerg, H., (2010) Nat. Methods, 7, pp. 377-381 Engelhardt, J., (2011) Nano Lett., 11, pp. 209-213 Lew, M.D., Backlund, M.P., Moerner, W.E., (2013) Nano Lett, 13, pp. 3967-3972 Yildiz, A., (2003) Science, 300, pp. 2061-2065 Elf, J., Li, G.-W., Xie, X.S., (2007) Science, 316, pp. 1191-1194 Kusumi, A., Tsunoyama, T.A., Hirosawa, K.M., Kasai, R.S., Fujiwara, T.K., (2014) Nat. Chem. Biol., 10, pp. 524-532 Sahl, S.J., Leutenegger, M., Hilbert, M., Hell, S.W., Eggeling, C., (2010) Proc. Natl. Acad. Sci. U.S.A., 107, pp. 6829-6834 Vogelsang, J., (2008) Angew. Chem. Int. Ed. Engl., 47, pp. 5465-5469 Zheng, Q., (2014) Chem. Soc. Rev., 43, pp. 1044-1056 Weisenburger, S., (2014) ChemPhysChem, 15, pp. 763-770 Sharonov, A., Hochstrasser, R.M., (2006) Proc. Natl. Acad. Sci. U.S.A., 103, pp. 18911-18916 Dai, M., Jungmann, R., Yin, P., (2016) Nat. Nanotechnol., 11, pp. 798-807 Pellegrotti, J.V., (2014) Nano Lett, 14, pp. 2831-2836 Sanamrad, A., (2014) Proc. Natl. Acad. Sci. U.S.A, 111, pp. 11413-11418 Hell, S.W., (2015) Angew. Chem. Int. Ed. Engl., 54, pp. 8054-8066 Hell, S.W., Method of and apparatus for tracking a particle, particularly a single molecule, in a sample (2013), Patent application WO, published 23 May; Hell, S.W., High-resolution fluorescence microscopy with a structured excitation beam (2015), Patent application WO, published 2 July; Schmied, J.J., (2012) Nat. Methods, 9, pp. 1133-1134 Dempsey, G.T., Vaughan, J.C., Chen, K.H., Bates, M., Zhuang, X., (2011) Nat. Methods, 8, pp. 1027-1036 McKinney, S.A., Murphy, C.S., Hazelwood, K.L., Davidson, M.W., Looger, L.L., (2009) Nat. Methods, 6, pp. 131-133 Vestergaard, C.L., (2016) Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 94 Michalet, X., Berglund, A.J., (2012) Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 85 Schuler, B., Lipman, E.A., Eaton, W.A., (2002) Nature, 419, pp. 743-747 Pertsinidis, A., Zhang, Y., Chu, S., (2010) Nature, 466, pp. 647-651 Voie, A.H., Burns, D.H., Spelman, F.A., (1993) J. Microsc., 170, pp. 229-236 Ashkin, A., Dziedzic, J.M., Bjorkholm, J.E., Chu, S., (1986) Opt. Lett., 11, pp. 288-290 Cohen, A.E., Moerner, W.E., (2005) Appl. Phys. B, 86 |
| ISSN: | 00368075 |
| DOI: | 10.1126/science.aak9913 |