Relative impact of mantle densification and eclogitization of slabs on subduction dynamics: A numerical thermodynamic/thermokinematic investigation of metamorphic density evolution

Understanding the relationships between density and spatio-thermal variations at convergent plate boundaries is important for deciphering the present-day dynamics and evolution of subduction zones. In particular, the interaction between densification due to mineralogical phase transitions and slab p...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Duesterhoeft, E.
Otros Autores: Quinteros, J., Oberhänsli, R., Bousquet, R., de Capitani, C.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier 2014
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 23985caa a22021017a 4500
001 PAPER-14613
003 AR-BaUEN
005 20230518204510.0
008 190411s2014 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84921976948 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Duesterhoeft, E. 
245 1 0 |a Relative impact of mantle densification and eclogitization of slabs on subduction dynamics: A numerical thermodynamic/thermokinematic investigation of metamorphic density evolution 
260 |b Elsevier  |c 2014 
270 1 0 |m Duesterhoeft, E.; Institute of Geosciences, University of Kiel, Ludewig-Meyn-Str. 10, Germany 
506 |2 openaire  |e Política editorial 
504 |a Afonso, J.C., Zlotnik, S., The subductability of continental lithosphere: The before and after story (2011) Arc-Continent Collision, pp. 53-86. , Springer Verlag, Berlin, Heidelberg, (chapter 3), D. Brown, P.D. Ryan (Eds.) 
504 |a Afonso, J., Ranalli, G., Fernandez, M., Thermal expansivity and elastic properties of the lithospheric mantle: results from mineral physics of composites (2005) Phys. Earth Planet. Inter., 149, pp. 279-306 
504 |a Angiboust, S., Wolf, S., Burov, E., Agard, P., Yamato, P., Effect of fluid circulation on subduction interface tectonic processes: insights from thermo-mechanical numerical modelling (2012) Earth Planet. Sci. Lett., pp. 238-248 
504 |a Arcay, D., Tric, E., Doin, M., Numerical simulations of subduction zones: effect of slab dehydration on the mantle wedge dynamics (2005) Phys. Earth Planet. Inter., 149, pp. 133-153 
504 |a Audet, P., Bostock, M.G., Christensen, N.I., Peacock, S.M., Seismic evidence for overpressured subducted oceanic crust and megathrust fault sealing (2009) Nature, 457, pp. 76-78 
504 |a Babeyko, A.Y., Sobolev, S.V., High-resolution numerical modeling of stress distribution in visco-elasto-plastic subducting slabs (2008) Lithos, 103, pp. 205-216 
504 |a Bach, W., Peucker-Ehrenbrink, B., Hart, S.R., Blusztajn, J.S., Geochemistry of hydrothermally altered oceanic crust: DSDP/ODP Hole 504B-implications for seawater-crust exchange budgets and Sr- and Pb-isotopic evolution of the mantle (2003) Geochem. Geophys. Geosyst., 4, pp. 1-29 
504 |a Berman, R., Internally-consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2 (1988) J. Petrol., 29, pp. 445-552 
504 |a Billen, M.I., Modeling the dynamics of subducting slabs (2008) Annu. Rev. Earth Planet. Sci., 36, pp. 325-356 
504 |a Bina, C.R., Kawakatsu, H., Buoyancy, bending, and seismic visibility in deep slab stagnation (2010) Phys. Earth Planet. Inter., 183, pp. 330-340 
504 |a Bina, C.R., Stein, S., Marton, F.C., Van Ark, E.M., Implications of slab mineralogy for subduction dynamics (2001) Phys. Earth Planet. Inter., 127, pp. 51-66 
504 |a Bostock, M.G., Hyndman, R.D., Rondenay, S., Peacock, S.M., An inverted continental Moho and serpentinization of the forearc mantle (2002) Nature, 417, pp. 536-538 
504 |a Bousquet, R., Goffé, B., Henry, P., Le Pichon, X., Chopin, C., Kinematic, thermal and petrological model of the Central Alps: Lepontine metamorphism in the upper crust and eclogitisation of the lower crust (1997) Tectonophysics, 273, pp. 105-127 
504 |a Bousquet, R., Goffé, B., Le Pichon, X., de Capitani, C., Chopin, C., Henry, P., Comment on "Subduction factory: 1. Theoretical mineralogy, densities, seismic wave speeds, and H2O contents" by Bradley R. Hacker, Geoffrey A. Abers, and Simon M. Peacock (2005) J. Geophys. Res., 110, pp. 1-3 
504 |a Brown, G.C., Mussett, A.E., (1993) The Inaccessible Earth: An Integrated View of Its Structure and Composition, , Chapman & Hall, London 
504 |a Bucher, K., Grapes, R., (2011) Petrogenesis of Metamorphic Rocks, , Springer, Berlin Heidelberg 
504 |a Connolly, J., Kerrick, D., Metamorphic controls on seismic velocity of subducted oceanic crust at 100-250km depth (2002) Earth Planet. Sci. Lett., 204, pp. 61-74 
504 |a Davies, J.H., The role of hydraulic fractures and intermediate-depth earthquakes in generating subduction-zone magmatism (1999) Nature, 398, pp. 142-145 
504 |a de Capitani, C., Brown, T., The computation of chemical equilibrium in complex systems containing non-ideal solutions (1987) Geochim. Cosmochim. Acta, 51, pp. 2639-2652 
504 |a de Capitani, C., Petrakakis, K., The computation of equilibrium assemblage diagrams with Theriak/Domino software (2010) Am. Mineral., 95, pp. 1006-1016 
504 |a Doin, M., Henry, P., Subduction initiation and continental crust recycling: the roles of rheology and eclogitization (2001) Tectonophysics, 342, pp. 163-191 
504 |a Duesterhoeft, E., (2013) The impact of metamorphic processes on physical properties: A view from thermodynamics to geodynamics, , (PhD thesis), University of Potsdam 
504 |a Duesterhoeft, E., de Capitani, C., THERIAK_D: an add-on to implement equilibrium computations in geodynamic models (2013) Geochem. Geophys. Geosyst., 14, pp. 4962-4967 
504 |a Duesterhoeft, E., Bousquet, R., Wichura, H., Oberhänsli, R., Anorogenic plateau formation: the importance of density changes in the lithosphere (2012) J. Geophys. Res., 117, pp. 1-13 
504 |a Duretz, T., Gerya, T.V., Kaus, B.J.P., Andersen, T.B., Thermomechanical modeling of slab eduction (2012) J. Geophys. Res., 117, pp. 1-17 
504 |a Ellis, D.E., Wyllie, P.J., Hydration and melting reactions in the system MgO-SiO2-H2O at pressures up to 100kbar (1979) Am. Mineral., 64, pp. 41-48 
504 |a Faccenda, M., Gerya, T.V., Mancktelow, N.S., Moresi, L., Fluid flow during slab unbending and dehydration: Implications for intermediate-depth seismicity, slab weakening and deep water recycling (2012) Geochem. Geophys. Geosyst., 13, pp. 1-23 
504 |a Forsyth, D., Uyeda, S., On the relative importance of the driving forces of plate motion (1975) Geophys. J. Roy. Astron. Soc., 43, pp. 163-200 
504 |a Ganguly, J., Freed, A., Saxena, S., Density profiles of oceanic slabs and surrounding mantle: integrated thermodynamic and thermal modeling, and implications for the fate of slabs at the 660km discontinuity (2009) Phys. Earth Planet. Inter., 172, pp. 257-267 
504 |a Gerya, T., Future directions in subduction modeling (2011) J. Geodyn., 52, pp. 344-378 
504 |a Gerya, T.V., Stöckhert, B., Perchuk, A.L., Exhumation of high-pressure metamorphic rocks in a subduction channel: a numerical simulation (2002) Tectonics, 21, p. 1056 
504 |a Gerya, T.V., Yuen, D.A., Maresch, W.V., Thermomechanical modelling of slab detachment (2004) Earth Planet. Sci. Lett., 226, pp. 101-116 
504 |a Gerya, T.V., Connolly, J.A.D., Yuen, D.A., Why is terrestrial subduction one-sided? (2008) Geology, 36, pp. 43-46 
504 |a Ghiorso, M.S., Hirschmann, M.M., Reiners, P.W., The pMELTS: A revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3GPa (2002) Geochem. Geophys. Geosyst., 3, pp. 1-36 
504 |a Giunchi, C., Ricard, Y., High-pressure/low-temperature metamorphism and the dynamics of an accretionary wedge (1999) Geophys. J. Int., 136, pp. 620-628 
504 |a Goffé, B., Bousquet, R., Henry, P., Le Pichon, X., Effect of the chemical composition of the crust on the metamorphic evolution of orogenic wedges (2003) J. Metamorph. Geol., 21, pp. 123-141 
504 |a Green, H.I., Houston, H., The mechanics of deep earthquakes (1995) Annu. Rev. Earth Planet. Sci., 23, pp. 169-213 
504 |a Grove, T.L., Till, C.B., Krawczynski, M.J., The role of H2O in subduction zone magmatism (2012) Annu. Rev. Earth Planet. Sci., 40, pp. 413-439 
504 |a Guillot, S., Hattori, K., Agard, P., Schwartz, S., Vidal, O., Exhumation processes in oceanic and continental subduction contexts: a review (2009) Frontiers in Earth Sciences, pp. 175-205. , Springer, Berlin, Heidelberg, S. Lallemand, F. Funiciello (Eds.) Subduction Zone Geodynamics 
504 |a Hacker, B.R., H2O subduction beyond arcs (2008) Geochem. Geophys. Geosyst., 9, pp. 1-24 
504 |a Hacker, B.R., Abers, G.A., Peacock, S.M., Subduction factory 1. Theoretical mineralogy, densities, seismic wave speeds, and H2O contents (2003) J. Geophys. Res., 108, pp. 1-26 
504 |a Hebert, L.B., Antoshechkina, P., Asimow, P., Gurnis, M., Emergence of a low-viscosity channel in subduction zones through the coupling of mantle flow and thermodynamics (2009) Earth Planet. Sci. Lett., 278, pp. 243-256 
504 |a Hebert, L.B., Asimow, P., Antoshechkina, P., Fluid source-based modeling of melt initiation within the subduction zone mantle wedge: Implications for geochemical trends in arc lavas (2009) Chem. Geol., 266, pp. 306-319 
504 |a Henry, P., Le Pichon, X., Goffé, B., Kinematic, thermal and petrological model of the Himalayas: constraints related to metamorphism within the underthrust Indian crust and topographic elevation (1997) Tectonophysics, 273, pp. 31-56 
504 |a Hetényi, G., Godard, V., Cattin, R., Connolly, J., Incorporating metamorphism in geodynamic models: the mass conservation problem (2011) Geophys. J. Int., 186, pp. 6-10 
504 |a Hofmann, A.W., Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust (1988) Earth Planet. Sci. Lett., 90, pp. 297-314 
504 |a Holland, T., Powell, R., An internally consistent thermodynamic data set for phases of petrological interest (1998) J. Metamorph. Geol., 16, pp. 309-343 
504 |a Isacks, B., Oliver, J., Sykes, L.R., Seismology and the new global tectonics (1968) J. Geophys. Res., 73, pp. 5855-5899 
504 |a Jaupart, C., Mareschal, J.C., (2011) Heat Generation and Transport in the Earth, , Cambridge University Press, Cambridge, U.K 
504 |a John, T., Gussone, N., Podladchikov, Y.Y., Bebout, G.E., Dohmen, R., Halama, R., Klemd, R., Seitz, H.M., Volcanic arcs fed by rapid pulsed fluid flow through subducting slabs (2012) Nat. Geosci., 5, pp. 489-492 
504 |a Kárason, H., Van der Hilst, R.D., Constraints on mantle convection from seismic tomography (2002) Geophys. Monogr., 121, pp. 277-288 
504 |a Kato, A., Iidaka, T., Ikuta, R., Yoshida, Y., Katsumata, K., Iwasaki, T., Sakai, S., Hirata, N., Variations of fluid pressure within the subducting oceanic crust and slow earthquakes (2010) Geophys. Res. Lett., 37, pp. 1-5 
504 |a Kawamoto, T., Holloway, J., Melting temperature and partial melt chemistry of H2O-saturated mantle peridotite to 11 gigapascals (1997) Science, 276, pp. 240-243 
504 |a Kelley, K.A., Plank, T., Ludden, J., Staudigel, H., Composition of altered oceanic crust at ODP Sites 801 and 1149 (2003) Geochem. Geophys. Geosyst., 4, pp. 1-21 
504 |a Köther, N., Götze, H.J., Gutknecht, B., Jahr, T., Jentzsch, G., Lücke, O., Mahatsente, R., Zeumann, S., The seismically active Andean and Central American margins: can satellite gravity map lithospheric structures? (2012) J. Geodyn., pp. 207-218 
504 |a Le Pichon, X., Sea-floor spreading and continental drift (1968) J. Geophys. Res., 73, pp. 3661-3697 
504 |a Le Pichon, X., Henry, P., Goffé, B., Uplift of Tibet: from eclogites to granulites-implications for the Andean Plateau and the Variscan belt (1997) Tectonophysics, 273, pp. 57-76 
504 |a Lee, C.T.A., Chen, W.P., Possible density segregation of subducted oceanic lithosphere along a weak serpentinite layer and implications for compositional stratification of the Earth's mantle (2007) Earth Planet. Sci. Lett., 255, pp. 357-366 
504 |a Li, X.P., Rahn, M., Bucher, K., Serpentinites of the Zermatt-Saas ophiolite complex and their texture evolution (2004) J. Metamorph. Geol., 22, pp. 159-177 
504 |a Li, Z.H., Gerya, T.V., Burg, J.-P., Influence of tectonic overpressure on P-T paths of HP-UHP rocks in continental collision zones: thermomechanical modelling (2010) J. Metamorph. Geol., 28, pp. 227-247 
504 |a McKenzie, D.P., Speculations on the consequences and causes of plate motions* (1969) Geophys. J. Roy. Astron. Soc., 18, pp. 1-32 
504 |a Morgan, W.J., Rises, trenches, great faults, and crustal blocks (1968) J. Geophys. Res., 73, pp. 1959-1982 
504 |a Negredo, A., Valera, J., Carminati, E., TEMSPOL: a MATLAB thermal model for deep subduction zones including major phase transformations (2004) Comput. Geosci., 30, pp. 249-258 
504 |a Oxburgh, E.R., Parmentier, E.M., Compositional and density stratification in oceanic lithosphere-causes and consequences (1977) J. Geol. Soc., 133, pp. 343-355 
504 |a Peacock, S.M., Thermal effects of metamorphic fluids in subduction zones (1987) Geology, 15, pp. 1057-1060 
504 |a Peacock, S.M., Subduction Top to Bottom (1996) Geophys. Monogr. Ser., 96, pp. 119-133 
504 |a Petrini, K., Podladchikov, Y., Lithospheric pressure-depth relationship in compressive regions of thickned crust (2000) J. Metamorph. Geol., 18, pp. 67-77 
504 |a Poli, S., Schmidt, M.W., Petrology of subducted slabs (2002) Annu. Rev. Earth Planet. Sci., 30, pp. 207-235 
504 |a Popov, A.A., Sobolev, S.V., Slim3d: a tool for three-dimensional thermomechanical modeling of the lithospheric deformation with elasto-visco-plastic rheology (2008) Phys. Earth Planet. Inter., 171, pp. 55-75 
504 |a Pourteau, A., Candan, O., Oberhänsli, R., High-pressure metasediments in central Turkey: constraints on the Neotethyan closure history (2010) Tectonics, 29, pp. 1-18 
504 |a Prezzi, C.B., Götze, H.J., Schmidt, S., 3D density model of the Central Andes (2009) Phys. Earth Planet. Inter., 177, pp. 217-234 
504 |a Quinteros, J., Sobolev, S.V., Constraining kinetics of metastable olivine in the Marianas slab from seismic observations and dynamic models (2012) Tectonophysics, pp. 48-55 
504 |a Quinteros, J., Sobolev, S.V., Why has the Nazca plate slowed since the Neogene? (2013) Geology, 41, pp. 31-34 
504 |a Raz, U., Girsperger, S., Thompson, A.B., Thermal expansion, compressibility and volumetric changes of quartz obtained by single crystal dilatometry to 700°C and 3.5 kilobars (0.35GPa) (2002) Schweiz. Mineral. Petrogr. Mitt., 82, pp. 561-574 
504 |a Ricard, Y., Mattern, E., Matas, J., Synthetic tomographic images of slabs from mineral physics (2005) Geophysical Monograph Series, 160, pp. 283-300. , AGU, Washington, D. C. R. van der Hilst, J.D. Bass, J. Matas, J. Trampert (Eds.) Earth's Deep Mantle: Structure, Composition, and Evolution 
504 |a Ringwood, A., Green, D., An experimental investigation the gabbro-eclogite transformation and some geophysical implications (1966) Tectonophysics, 3, pp. 383-427 
504 |a Ringwood, A., Irifune, T., Nature of the 650-km seismic discontinuity: implications for mantle dynamics and differentiation (1988) Nature, 331, pp. 131-136 
504 |a Robie, R.A., Hemingway, B.S., Thermodynamic properties of minerals and related substances at 298.15K and 1bar (105 Pascals) pressure and at higher temperatures (1995) U.S. Geol. Surv. Bull., 2131, p. 461 
504 |a Rüpke, L.H., Morgan, J.P., Hort, M., Connolly, J.A.D., Ru, L.H., Are the regional variations in Central American arc lavas due to differing basaltic versus peridotitic slab sources of fluids? (2002) Geology, 30, pp. 1035-1038 
504 |a Schellart, W.P., Quantifying the net slab pull force as a driving mechanism for plate tectonics (2004) Geophys. Res. Lett., 31, p. L07611 
504 |a Schmidt, M., Poli, S., Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation (1998) Earth Planet. Sci. Lett., 163, pp. 361-379 
504 |a Simon, N.S., Podladchikov, Y.Y., The effect of mantle composition on density in the extending lithosphere (2008) Earth Planet. Sci. Lett., 272, pp. 148-157 
504 |a Sobolev, S.V., Babeyko, A.Y., Modeling of mineralogical composition, density and elastic wave velocities in anhydrous magmatic rocks (1994) Surv. Geophys., 15, pp. 515-544 
504 |a Sobolev, S.V., Babeyko, A.Y., What drives orogeny in the Andes? (2005) Geology, 33, pp. 617-620 
504 |a Sobolev, S.V., Babeyko, A.Y., Koulakov, I., Oncken, O., Mechanism of the Andean Orogeny: Insight from Numerical Modeling (2006) The Andes Frontiers in Earth Sciences, pp. 513-535. , Springer, Berlin Heidelberg, (chapter Part IV), O. Oncken, G. Chong, G. Franz, P. Giese, H.J. Götze, V.A. Ramos, M.R. Strecker, P. Wigger (Eds.) 
504 |a Stein, C., Stein, S., A model for the global variation in oceanic depth and heat flow with lithospheric age (1992) Nature, 359, pp. 123-129 
504 |a Stern, R.J., Subduction zones (2002) Rev. Geophys., 40, p. 1012 
504 |a Tašárová, Z.A., Towards understanding the lithospheric structure of the southern Chilean subduction zone (36 °S-42 °S) and its role in the gravity field (2007) Geophys. J. Int., 170, pp. 995-1014 
504 |a Tassara, A., Echaurren, A., Anatomy of the Andean subduction zone: three-dimensional density model upgraded and compared against global-scale models (2012) Geophys. J. Int., 189, pp. 161-168 
504 |a Ulmer, P., Trommsdorff, V., Serpentine stability to mantle depths and subduction-related magmatism (1995) Science, 268, pp. 858-861 
504 |a van Keken, P.E., Currie, C., King, S.D., Behn, M.D., Cagnioncle, A., He, J., Katz, R.F., Wang, K., A community benchmark for subduction zone modeling (2008) Phys. Earth Planet. Inter., 171, pp. 187-197 
504 |a Vlaar, N., Wortel, M., Lithospheric aging, instability and subduction (1976) Tectonophysics, 32, pp. 331-351 
504 |a Wada, I., Behn, M.D., Shaw, A.M., Effects of heterogeneous hydration in the incoming plate, slab rehydration, and mantle wedge hydration on slab-derived H2O flux in subduction zones (2012) Earth Planet. Sci. Lett., pp. 60-71 
504 |a Wayte, G.J., Worden, R.H., Rubie, D.C., Droop, G.T.R., A TEM study of disequilibrium plagioclase breakdown at high pressure: the role of infiltrating fluid (1989) Contrib. Mineral. Petrol., 101, pp. 426-437 
504 |a Zhao, D., Seismic structure and origin of hotspots and mantle plumes (2001) Earth Planet. Sci. Lett., 192, pp. 251-265 
520 3 |a Understanding the relationships between density and spatio-thermal variations at convergent plate boundaries is important for deciphering the present-day dynamics and evolution of subduction zones. In particular, the interaction between densification due to mineralogical phase transitions and slab pull forces is subject to ongoing investigations. We have developed a two-dimensional subduction zone model that is based on thermodynamic equilibrium assemblage calculations and includes the effects of melting processes on the density distribution in the lithosphere. Our model calculates the "metamorphic density" of rocks as a function of pressure, temperature and chemical composition in a subduction zone down to 250. km. We have used this model to show how the hydration, dehydration, partial melting and fractionation processes of rocks all influence the metamorphic density and greatly depend on the temperature field within the subduction system. These processes are largely neglected by other approaches that reproduce the density distribution within this complex tectonic setting. Our model demonstrates that the initiation of eclogitization (i.e., when crustal rocks reach higher densities than the ambient mantle) of the slab is not the only significant process that makes the descending slab denser and generates the slab pull force. Instead, the densification of the lithospheric mantle of the sinking slab starts earlier than eclogitization and contributes significantly to slab pull in the early stages of subduction. Accordingly, the complex metamorphic structure of the slab and the mantle wedge has an important impact on the development of subduction zones. © 2014 Elsevier B.V.  |l eng 
536 |a Detalles de la financiación: State University of New York Potsdam 
536 |a Detalles de la financiación: Deutsche Forschungsgemeinschaft, SPP 1257 
536 |a Detalles de la financiación: Deutsche Forschungsgemeinschaft 
536 |a Detalles de la financiación: The research was supported by DFG research grant SPP 1257 project 6.2 and the Graduate School GRK1364 Shaping Earth's Surface in a Variable Environment funded by the German Research Foundation (DFG), co-financed by the federal state of Brandenburg and the University of Potsdam. We thank Olivier Vanderhaeghe and an anonymous colleague for their positive reviews, which helped to improve the quality of this manuscript. Appendix A 
593 |a Institute of Earth and Environmental Science, University of Potsdam, Karl-Liebknecht-Str. 24-25, Potsdam-Golm, 14476, Germany 
593 |a Institute of Geosciences, University of Kiel, Ludewig-Meyn-Str. 10, Kiel, 24118, Germany 
593 |a Deutsches GeoForschungsZentrum GFZ, Telegrafenberg, Potsdam, 14473, Germany 
593 |a Department of Computer Sciences, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina 
593 |a Institute of Mineralogy and Petrography, University of Basel, Bernoullistrasse 30, Basel, 4056, Switzerland 
690 1 0 |a DENSITY 
690 1 0 |a MELT 
690 1 0 |a METAMORPHISM 
690 1 0 |a SUBDUCTION 
690 1 0 |a THERMO-MECHANICAL MODELING 
690 1 0 |a THERMODYNAMIC MODELING 
690 1 0 |a DENSIFICATION 
690 1 0 |a DENSIFICATION 
690 1 0 |a DENSITY (SPECIFIC GRAVITY) 
690 1 0 |a DENSITY (SPECIFIC GRAVITY) 
690 1 0 |a MELTING 
690 1 0 |a MELTING 
690 1 0 |a PHASE TRANSITIONS 
690 1 0 |a PHASE TRANSITIONS 
690 1 0 |a STRUCTURAL GEOLOGY 
690 1 0 |a STRUCTURAL GEOLOGY 
690 1 0 |a TECTONICS 
690 1 0 |a TECTONICS 
690 1 0 |a THERMODYNAMICS 
690 1 0 |a THERMODYNAMICS 
690 1 0 |a CONVERGENT PLATE BOUNDARIES 
690 1 0 |a CONVERGENT PLATE BOUNDARIES 
690 1 0 |a METAMORPHIC STRUCTURES 
690 1 0 |a METAMORPHIC STRUCTURES 
690 1 0 |a METAMORPHISM 
690 1 0 |a METAMORPHISM 
690 1 0 |a SUBDUCTION 
690 1 0 |a SUBDUCTION 
690 1 0 |a SUBDUCTION ZONE MODELING 
690 1 0 |a SUBDUCTION ZONE MODELING 
690 1 0 |a THERMODYNAMIC EQUILIBRIA 
690 1 0 |a THERMODYNAMIC EQUILIBRIA 
690 1 0 |a THERMODYNAMIC MODEL 
690 1 0 |a THERMODYNAMIC MODEL 
690 1 0 |a THERMOMECHANICAL MODEL 
690 1 0 |a THERMOMECHANICAL MODEL 
690 1 0 |a METAMORPHIC ROCKS 
690 1 0 |a MANTLE STRUCTURE 
690 1 0 |a METAMORPHISM 
690 1 0 |a PLATE BOUNDARY 
690 1 0 |a PLATE CONVERGENCE 
690 1 0 |a SLAB 
690 1 0 |a SUBDUCTION ZONE 
690 1 0 |a THERMODYNAMICS 
700 1 |a Quinteros, J. 
700 1 |a Oberhänsli, R. 
700 1 |a Bousquet, R. 
700 1 |a de Capitani, C. 
773 0 |d Elsevier, 2014  |g v. 637  |h pp. 20-29  |p Tectonophysics  |x 00401951  |w (AR-BaUEN)CENRE-81  |t Tectonophysics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84921976948&doi=10.1016%2fj.tecto.2014.09.009&partnerID=40&md5=72eebddbdb0e03c795a634cdf27fc66b  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.tecto.2014.09.009  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00401951_v637_n_p20_Duesterhoeft  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00401951_v637_n_p20_Duesterhoeft  |y Registro en la Biblioteca Digital 
961 |a paper_00401951_v637_n_p20_Duesterhoeft  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 75566