Core-dependent and ligand-dependent relativistic corrections to the nuclear magnetic shieldings in MH4−nYn (n = 0–4; M = Si, Ge, Sn, and Y = H, F, Cl, Br, I) model compounds

The nuclear magnetic shieldings of Si, Ge, and Sn in MH4−nYn (M = Si, Ge, Sn; Y = F, Cl, Br, I and n = 1–4) molecular systems are highly influenced by the substitution of one or more hydrogens by heavy-halogen atoms. We applied the linear response elimination of small components (LRESC) formalism to...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Maldonado, A.F
Otros Autores: Aucar, G.A, Melo, Juan Ignacio
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Springer Verlag 2014
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:The nuclear magnetic shieldings of Si, Ge, and Sn in MH4−nYn (M = Si, Ge, Sn; Y = F, Cl, Br, I and n = 1–4) molecular systems are highly influenced by the substitution of one or more hydrogens by heavy-halogen atoms. We applied the linear response elimination of small components (LRESC) formalism to calculate those shieldings and learn whether including only a few of the leading relativistic correction terms is sufficient to be able to quantitatively reproduce the full relativistic value. It was observed that the nuclear magnetic shieldings change as the number of heavy halogen substituents and their weights vary, and the pattern of σ(M) generally does not exhibit the normal halogen dependence (NHD) behavior that can be seen in similar molecular systems containing carbon atoms. We also analyzed each relativistic correction afforded by the LRESC method and split them in two: core-dependent and ligand-dependent contributions; we then looked for the electronic mechanisms involved in the different relativistic effects and in the total relativistic value. Based on this analysis, we were able to study the electronic mechanism involved in a recently proposed relativistic effect, the “heavy atom effect on vicinal heavy atom” (HAVHA), in more detail. We found that the main electronic mechanism is the spin–orbit or σp T(3) correction, although other corrections such as σp S(1) and σp S(3) are also important. Finally, we analyzed proton magnetic shieldings and found that, for molecules containing Sn as the central atom, σ(H) decreases as the number of heavy halogen substituents (of the same type: either F, Cl, or Br) increases, albeit at different rates for different halogens. σ(H) only increase as the number of halogen substituents increases if the halogen is iodine. © 2014, Springer-Verlag Berlin Heidelberg.
Bibliografía:Edlund, U., Lejon, T., Pyykkö, P., Venkatachalam, T.K., Buncel, E., (1987) J Am Chem Soc, 109, p. 5982. , COI: 1:CAS:528:DyaL2sXltlCgu7o%3D
Pyykkö, P., Görling, A., Rösch, N., (1987) Mol Phys, 61, p. 195
Kaupp, M., Malkina, O.L., Malkin, V.G., Pyykkö, P., (1998) Chem Eur J, 4, p. 118. , COI: 1:CAS:528:DyaK1cXmtlCmtg%3D%3D
Melo, J.I., Ruiz deAzúa, M.C., Giribet, C.G., Aucar, G.A., Provasi, P.F., (2004) J Chem Phys, 121, p. 6798. , COI: 1:CAS:528:DC%2BD2cXotVKmsb8%3D
Kaupp, M., Schwerdtfeger, P., Relativistic effects on NMR chemical shifts (Chapter 9) (2004) Relativistic electronic structure theory, part 2: Applications, 2, pp. 552-597. , Elsevier, Amsterdam:
Lantto, P., Romero, R.H., Gomez, S.S., Aucar, G.A., Vaara, J., (2006) J Chem Phys, 125, p. 184113
Vaara, J., (2007) Phys Chem Chem Phys, 9, p. 5399. , COI: 1:CAS:528:DC%2BD2sXhtFCgsr7L
Maldonado, A.F., Aucar, G.A., (2009) Phys Chem Chem Phys, 11, p. 5615. , COI: 1:CAS:528:DC%2BD1MXotFWmsLk%3D
Autschbach, J., Zheng, S., (2009) Annu Rep NMR Spectrosc, 67, p. 1. , COI: 1:CAS:528:DC%2BD1MXhsFaru7fP
Kantola, A.M., Lantto, P., Vaara, J., Jokisaari, J., (2010) Phys Chem Chem Phys, 12, p. 2679. , COI: 1:CAS:528:DC%2BC3cXislWktr8%3D
Arcisauskaite, V., Melo, J.I., Hemmingsen, L., Sauer, S.P.A., (2011) J Chem Phys, 135, p. 044306
Roukala, J., Maldonado, A.F., Vaara, J., Aucar, G.A., Lantto, P., (2011) Phys Chem Chem Phys, 13, p. 21016. , COI: 1:CAS:528:DC%2BC3MXhsFaiurfN
Melo, J.I., Maldonado, A.F., Aucar, G.A., (2012) J Chem Phys, 137, p. 214319
Melo, J.I., Maldonado, A.F., Aucar, G.A., (2011) Theor Chem Accounts, 129, p. 483. , COI: 1:CAS:528:DC%2BC3MXmtVGktbs%3D
Melo, J.I., Ruiz deAzúa, M.C., Giribet, C.G., Aucar, G.A., Romero, R.H., (2003) J Chem Phys, 118, p. 471. , COI: 1:CAS:528:DC%2BD38XpvVejurY%3D
Manninen, P., Lantto, P., Vaara, J., Ruud, K., (2003) J Chem Phys, 119, p. 2623. , COI: 1:CAS:528:DC%2BD3sXlsFKgtr8%3D
Manninen, P., Ruud, K., Lantto, P., Vaara, J., (2005) J Chem Phys, 122, p. 114107
Rodriguez-Fortez, A., Alemany, P., Ziegler, T., (1999) J Phys Chem A, 103, p. 8288
Maldonado, A.F., Aucar, G.A., (2014) J Phys Chem A
Gomez, S.S., Maldonado, A.F., Aucar, G.A., (2005) J Chem Phys, 123, p. 214108
Visscher, L., Enevoldsen, T., Saue, T., Jensen, H.J.A., Oddershede, J., (1999) J Comput Chem, 20, p. 1262. , COI: 1:CAS:528:DyaK1MXlt1GhsL0%3D
Jameson, C.J., (1998) Multinuclear NMR, , Plenum, New York:
Kaupp, M., Kaupp, M., Bühl, M., Malkin, V.G., Interpretation of NMR chemical shifts (Chapter 18) (2004) Calculation of NMR and EPR parameters: theory and applications, pp. 293-306. , Wiley-VCH, Weinheim:
Fukawa, S., Hada, M., Fukuda, R., Tanaka, S., Nakatsuji, H., (2001) J Comput Chem, 22, p. 528. , COI: 1:CAS:528:DC%2BD3MXisVSnur8%3D
Aucar, G.A., Romero, R.H., Maldonado, A.F., (2010) Int Rev Phys Chem, 29, p. 1. , COI: 1:CAS:528:DC%2BC3cXjt1yhu78%3D
Saue, T., Visscher, L., Bast, R., Jensen, H.J.A., Dyall, K.G., Ekstrom, U., Eliav, E., Yamamoto, S., (2010) DIRAC10, , http://dirac.chem.sdu.dk, University of Southern Denmark, Odense:
Kagakkai, N.B., (1984) Kagaku benran, , 3rd edn. Maruzen, Tokyo
Sadlej, A.J., (1991) Theor Chim Acta, 79, p. 123. , COI: 1:CAS:528:DyaK3MXktlGrurs%3D
Maldonado, A.F., Gimenez, C.A., Aucar, G.A., (2012) Chem Phys, 395, p. 75. , COI: 1:CAS:528:DC%2BC38XitF2ksLk%3D
Maldonado, A.F., Gimenez, C.A., Aucar, G.A., (2012) J Chem Phys, 136, p. 224110
Aidas, K., Angeli, C., Bak, K.L., Bakken, V., Bast, R., Boman, L., Christiansen, O., gren, H., The Dalton quantum chemistry program system (2013) WIREs Comput Mol Sci, 4, pp. 269-284
Kaneko, H., Hada, M., Nakajima, T., Nakatsuji, H., (1996) Chem Phys Lett, 261, p. 1. , COI: 1:CAS:528:DyaK28XlvFKnsbw%3D
ISSN:16102940
DOI:10.1007/s00894-014-2417-z