β-Lactoglobulin-carboxymethylcellulose core-shell microparticles: Construction, characterization and isolation

The aim of this work was to build, to isolate and to characterize, core-shell microparticles composed of a core of thermally aggregated β-lactoglobulin (β-lg) covered by a shell of carboxymethylcellulose (CMC). The core-shell particles were obtained by mixing (β-lg)n and CMC solutions at pH 7 and fi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Carpineti, L.
Otros Autores: Martinez, M.J, Pilosof, A.M.R, Pérez, O.E
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2014
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:The aim of this work was to build, to isolate and to characterize, core-shell microparticles composed of a core of thermally aggregated β-lactoglobulin (β-lg) covered by a shell of carboxymethylcellulose (CMC). The core-shell particles were obtained by mixing (β-lg)n and CMC solutions at pH 7 and finally, decreasing the pH up to 4, promoting the adsorption of CMC on the protein core due their opposite electric charge. The core-shell microparticles were characterized by static laser light scattering (SLS), optical microscopy and atomic force microscopy (AFM). At pH 4, (β-lg)n showed a diameter ∼200 nm, but after adding the polysaccharide had a diameter ∼1 μm. The microscopy corroborated the data obtained by SLS measurements. Core-shell microparticles could be isolated by lyophilization and potentially applied as a fat replacement and/or a delivery systems for encapsulated substances in food formulations. © 2014 Elsevier Ltd. All rights reserved.
Bibliografía:Aberkane, L., Jasniewski, J., Gaiani, C., Hussain, R., Scher, J., Sanchez, C., Structuration mechanism of β-lactoglobulin - Acacia gum assemblies in presence of quercetin (2012) Food Hydrocolloids, 29, pp. 9-20
Akkermans, C., Van Der Goot, A.J., Venema, P., Gruppen, H., Vereijken, J.M., Van Der Linden, E., Boom, R.M., Micrometer-sized fibrillar protein aggregates from soy glycinin and soy protein isolate (2007) Journal of Agricultural and Food Chemistry, 55 (24), pp. 9877-9882. , DOI 10.1021/jf0718897
Anarjan, N., Tan, C.P., Developing a three component stabilizer system for producing astaxanthin nanodispersions (2013) Food Hydrocolloids, 30 (1), pp. 437-447
Arzeni, C., Pérez, O.E., Pilosof, A.M.R., Functionality of egg white proteins as affected by high intensity ultrasound (2012) Food Hydrocolloids, 29 (2), pp. 308-316
Aymard, P., Nicolai, T., Durand, D., Clark, A., Static and Dynamic Scattering of β-Lactoglobulin Aggregates Formed after Heat-Induced Denaturation at pH 2 (1999) Macromolecules, 32 (8), pp. 2542-2552
Berne, B.J., Pecora, R., (1976) Dynamic Light Scattering with Applications to Chemistry, Biology and Physics, , Wiley-Interscience New York
Broersen, K., Van Teeffelen, A.M.M., Vries, A., Voragen, A.G.J., Hamer, R.J., De Jongh, H.H.J., Do sulfhydryl groups affect aggregation and gelation properties of ovalbumin? (2006) Journal of Agricultural and Food Chemistry, 54 (14), pp. 5166-5174. , DOI 10.1021/jf0601923
Bromley, E.H.C., Krebs, M.R.H., Donald, A.M., Aggregation across the length-scales in β-lactoglobulin (2005) Faraday Discuss., 128, pp. 13-27
Callewaert, M., Laurent-Maquin, D., Edwards-Levy, F., Albumin-alginate-coated microspheres: Resistance to steam sterilization and to lyophilization (2007) International Journal of Pharmaceutics, 344 (1-2), pp. 161-164. , DOI 10.1016/j.ijpharm.2007.05.053, PII S037851730700467X, New Trends in Drug Delivery Systems
Chanasattru, W., Jones, O.G., Decker, E.A., McCelments, D.J., Impact of cosolvents on formation and porperties of biopolymer nanoparticles formed by heat treatment of β-lactoglobulin-pectin complexes (2009) Food Hydrocolloids, 23, pp. 2450-2457
Chen, L.Y., Remondetto, G.E., Subirade, M., Food protein-based material as nutraceutical delivery systems (2006) Trend Food Sci. Technol., 17 (5), pp. 272-283
Chen, C., Han, D., Cai, C., Tang, X., An overview of liposome lyophilization and its future potential (2010) J. Controlled Release, 142, pp. 299-311
Coviello, T., Matricardi, P., Marianecci, C., Alhaique, F., Polysaccharide hydrogels for modified release formulations (2007) Journal of Controlled Release, 119 (1), pp. 5-24. , DOI 10.1016/j.jconrel.2007.01.004, PII S0168365907000399
Dalgleish, D.G., The conformations of proteins on solid/water interfaces - Caseins and phosvitin on polystyrene latices (1990) Colloids Surf., 46 (2), pp. 141-155
DeGroot, A.R., Neufeld, R.J., Encapsulation of urease in alginate beads and protection from α-chymotrypsin with chitosan membranes (2001) Enzyme and Microbial Technology, 29 (6-7), pp. 321-327. , DOI 10.1016/S0141-0229(01)00393-3, PII S0141022901003933
Elzoghby, A.O., Abo El-Fotoh, W.S., Elgindy, N.A., Casein-based formulations as promising controlled release drug delivery systems (2011) J. Controlled Release, 153 (3), pp. 206-216
Emerich, D.F., Thanos, C.G., Targeted nanoparticle-based drug delivery and diagnosis (2007) Journal of Drug Targeting, 15 (3), pp. 163-183. , DOI 10.1080/10611860701231810, PII 776613309
European Union Commission, 1996. Commission Directive 96/77/EC; Galazka, V.B., Dickinson, E., Ledward, D.A., Effect of high pressure on the emulsifying behaviour of β-lactoglobulin (1996) Food Hydrocolloids, 10 (2), pp. 213-219
Goldberg, M., Langer, R., Jia, X., Nanostructured materials for applications in drug delivery and tissue engineering (2007) Journal of Biomaterials Science, Polymer Edition, 18 (3), pp. 241-268. , DOI 10.1163/156856207779996931
Gregory, J., Barany, S., Adsorption and flocculation by polymers and polymer mixtures (2011) Adv. Colloid Interface Sci., 169 (1), pp. 1-12
Gu, Y.S., Decker, A.E., McClements, D.J., Production and characterization of oil-in-water emulsions containing droplets stabilized by multilayer membranes consisting of β-lactoglobulin, l-carrageenan and gelatin (2005) Langmuir, 21 (13), pp. 5752-5760. , DOI 10.1021/la046888c
Güzey, D., Kim, H.J., McClements, D.J., Factors influencing the production of o/w emulsions stabilized by β-lactoglobulin-pectin membranes (2004) Food Hydrocolloids, 18 (6), pp. 967-975
Hansen, P.M., Hidaldo, J., Gould, I.A., Reclamation of whey protein with carboxymethylcellulose (1971) J. Dairy Sci., 54, pp. 830-834
Harnsilawat, T., Pongsawatmanit, R., McClements, D.J., Characterization of β-lactoglobulin-sodium alginate interactions in aqueous solutions: A calorimetry, light scattering, electrophoretic mobility and solubility study (2006) Food Hydrocolloids, 20 (5), pp. 577-585. , DOI 10.1016/j.foodhyd.2005.05.005, PII S0268005X05000937
Heinze, T., Liebert, T., Unconventional methods in cellulose functionalization (2001) Progress in Polymer Science (Oxford), 26 (9), pp. 1689-1762. , DOI 10.1016/S0079-6700(01)00022-3, PII S0079670001000223
Ho, Q.T., Carmeliet, J., Datta, A.K., Defraeye, T., Delele, M.A., Herremans, E., Opara, L., Nicolai, B.M., Multiscale modeling in food engineering (2013) J. Food Eng., 114 (3), pp. 279-291
Hoffman, M.A.M., Van Mil, P.J.J.M., Heat-induced aggregation of β-lactoglobulin as a function of pH (1999) Journal of Agricultural and Food Chemistry, 47 (5), pp. 1898-1905. , DOI 10.1021/jf980886e
Huang, X., Kakuda, Y., Cui, W., Hydrocolloids in emulsions: Particle size distribution and interfacial activity (2001) Food Hydrocolloids, 15 (4-6), pp. 533-542. , DOI 10.1016/S0268-005X(01)00091-1, PII S0268005X01000911
Hunter, R.J., (2001) Foundations of Colloid Science, , Oxford Clarendon Press
Ilgin, P., Avci, G., Silan, C., Ekici, S., Aktas, N., Ayyala, R.S., John, V.T., Sahiner, N., Colloidal drug carries from (sub)micron hyaluronic acid hydrogel particles with tunable properties for biomedical applications (2011) Carbohydr. Polym., 82 (3), pp. 997-1003
ISO 6731. 1989. Milk, Cream and Evaporated Milk-Determination of Total Solids Content (Reference Method). ISO, Geneva, Switzerland; Jones, O.G., McClements, D.J., Recent progress in biopolymer nanoparticle and microparticle formation by heat-treating electrostatic protein-polysaccharide complexes (2011) Adv. Colloid Interface Sci., 167 (12), pp. 49-62
Kulkarni, G.T., Gowthamarajan, K., Dhobe, R.R., Yohanan, F., Suresh, B., Development of controlled release spheriods using natural polysaccharide as release modifier (2005) Drug Delivery: Journal of Delivery and Targeting of Therapeutic Agents, 12 (4), pp. 201-206. , DOI 10.1080/10717540590952537
Lakkis, J.M., Thies, C., Microencapsulation of flavors by complex coacervation (2007) Encapsulation and Controlled Release Technologies in Food Systems, pp. 148-170. , J.M. Lakkis, Blackwell Publishing Ltd Oxford, UK
Lavaggi, M.L., Cabrera, M., Aravena, M.A., Olea-Azar, C., López De Ceráin, A., Monge, A., Pachón, G., Cerecetto, H., Study of benzo[a]phenazine 7,12-dioxide as selective hypoxic cytotoxin-scaffold. Identification of aerobic-antitumoral activity through DNA fragmentation (2010) Bioorg. Med. Chem., 18, pp. 4440-4443
Laville, M., Babin, J., Londono, I., Legros, M., Nouvel, C., Durand, A., Vanderesse, R., Six, J.-L., Polysaccharide-covered nanoparticles with improved shell stability using click-chemistry strategies (2013) Carbohydr. Polym., 93 (2), pp. 537-546
Lee, H.S., Choi, J.I., Kim, J.H., Lee, K.W., Chung, Y.J., Shin, M.H., Byun, M.W., Lee, J.W., Investigation on radiation degradation of carboxymethylcellulose by ionizing irradiation (2009) Appl. Radiat. Isot., 67, pp. 1513-1515
Leroux, J., Langendorff, V., Schick, G., Vaishnav, V., Mazoyer, J., Emulsion stabilizing properties of pectin (2003) Food Hydrocolloids, 17 (4), pp. 455-462
Lesmes, U., McClements, D.J., Controlling lipid digestibility: Response of lipid droplets coated by β-lactoglobulin-dextran Maillard conjugates to simulated gastrointestinal conditions (2012) Food Hydrocolloids, 26, pp. 221-230
Calculating Volume Distributions from Dynamic Light Scattering Data, , http://www.malvern.com, Malvern-Instruments
Mandal, B., Bhattacharjee, H., Mittal, N., Sah, H., Balabathula, P., Thoma, L.A., Wood, G.C., Core-shell-type lipid-polymer hybrid nanoparticles as a drug delivery platform (2013) Nanomed.: Nanotechnol. Biol. Med., 9, pp. 474-491
Mehalebi, S., Nicolai, T., Durand, D., Light scattering study of heat-denatured globular protein aggregates (2008) Int. J. Biol. Macromol., 43, pp. 129-135
Mirabedini, S.M., Dutil, I., Farnood, R.R., Preparation and characterization of ethyl cellulose-based core shell microcapsules containing plant oils (2012) Colloids Surf., A, 394, pp. 74-84
Morita, T., Horikiri, Y., Suzuki, T., Yoshino, H., Preparation of gelatin microparticles by co-lyophilization with poly(ethylene glycol): Characterization and application to entrapment into biodegradable microspheres (2001) International Journal of Pharmaceutics, 219 (1-2), pp. 127-137. , DOI 10.1016/S0378-5173(01)00642-1, PII S0378517301006421
Murúa-Pagola, B., Beristain-Guevara, C.I., Martínez-Bustos, F., Preparation of starch derivatives using reactive extrusion and evaluation of modified starches as shell materials for encapsulation of flavoring agents by spray drying (2009) J. Food Eng., 91 (3), pp. 380-386
Navarra, G., Leone, M., Militello, V., Thermal aggregation of β-lactoglobulin in presence of metal ions (2007) Biophysical Chemistry, 131 (1-3), pp. 52-61. , DOI 10.1016/j.bpc.2007.09.003, PII S0301462207002049
Santipanichwong, R., Suphantharika, M., Weiss, J., McClements, D.J., Core-shell biopolymer nanoparticles produced by electrostatic deposition of beet pectin onto heat-denatured β-lactoglobulin aggregates (2008) J. Food Sci., 73 (6), pp. 23-30
Schokker, E.P., Singh, H., Pinder, D.N., Norris, G.E., Creamer, L.K., Characterization of intermediates formed during heat-induced aggregation of β-lactoglobulin AB at neutral pH (1999) International Dairy Journal, 9 (11), pp. 791-800. , DOI 10.1016/S0958-6946(99)00148-X, PII S095869469900148X
Schokker, E.P., Singh, H., Creamer, L.K., Heat-induced aggregation of β-lactoglobulin A and B with α-lactalbumin (2000) Int. Dairy J., 10, pp. 843-853
Shapiro, L., Cohen, S., Novel alginate sponges for cell culture and transplantation (1997) Biomaterials, 18 (8), pp. 583-590. , DOI 10.1016/S0142-9612(96)00181-0, PII S0142961296001810
Sharma, M., Haque, Z.U., Wilson, W.W., Association tendency of β-lactoglobulin AB purified by gel permeation chromatography as determined by dynamic light scattering under quiescent conditions (1996) Food Hydrocolloids, 10 (3), pp. 323-328
Su, J., Huang, Z., Yuan, X.-Y., Wang, X.-Y., Li, M., Structure and properties of carboxymethyl cellulose/soy protein isolate blend edible films crosslinked by Maillard reactions (2010) Carbohydr. Polym., 79, pp. 149-153
Surroca, Y., Haverkamp, J., Heck, A.J.R., Towards the understanding of molecular mechanisms in the early stages of heat-induced aggregation of β-lactoglobulin AB (2002) Journal of Chromatography A, 970 (1-2), pp. 275-285. , DOI 10.1016/S0021-9673(02)00884-1, PII S0021967302008841
Turgeon, S.L., Beaulieu, M., Schmitt, C., Sanchez, C., Protein-polysaccharide interactions: Phase-ordering kinetics, thermodynamic and structural aspects (2003) Current Opinion in Colloid and Interface Science, 8 (4-5), pp. 401-414. , DOI 10.1016/S1359-0294(03)00093-1, PII S1359029403000931
Ubbink, J., Kruger, J., Physical approaches for the delivery of active ingredients in foods (2006) Curr. Opin. Colloid Interface Sci., 17 (2), pp. 244-254
Vásconez, M.B., Flores, S.K., Campos, C.A., Alvarado, J., Gerschenson, L.N., Antimicrobial activity and phisical properties of chitosan-tapioca starch based edible films and coatings (2009) Food Res. Int., 42 (7), pp. 762-769
Verheul, M., Roefs, S.P.F.M., De Kruif, K.G., Kinetics of heat-induced aggregation of β-lactoglobulin (1998) J. Agric. Food Chem., 46, pp. 896-903
Wu, J., Kong, T., Yeung, K.W.K., Shum, H.C., Cheung, K.M.C., Wang, L., To, M.K.T., Fabrication and characterization of monodisperse PLGA-alginate core-shell microspheres with monodisperse size and homogeneous shells for controlled drug release (2013) Acta Biomater., 9 (7), pp. 7410-7419
Ye, M., Kim, S., Park, K., Issues in long-term protein delivery using biodegradable microparticles (2010) J. Controlled Release, 146 (2), pp. 241-260
ISSN:02608774
DOI:10.1016/j.jfoodeng.2014.01.018