β-Lactoglobulin-carboxymethylcellulose core-shell microparticles: Construction, characterization and isolation
The aim of this work was to build, to isolate and to characterize, core-shell microparticles composed of a core of thermally aggregated β-lactoglobulin (β-lg) covered by a shell of carboxymethylcellulose (CMC). The core-shell particles were obtained by mixing (β-lg)n and CMC solutions at pH 7 and fi...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | , , |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
2014
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| Sumario: | The aim of this work was to build, to isolate and to characterize, core-shell microparticles composed of a core of thermally aggregated β-lactoglobulin (β-lg) covered by a shell of carboxymethylcellulose (CMC). The core-shell particles were obtained by mixing (β-lg)n and CMC solutions at pH 7 and finally, decreasing the pH up to 4, promoting the adsorption of CMC on the protein core due their opposite electric charge. The core-shell microparticles were characterized by static laser light scattering (SLS), optical microscopy and atomic force microscopy (AFM). At pH 4, (β-lg)n showed a diameter ∼200 nm, but after adding the polysaccharide had a diameter ∼1 μm. The microscopy corroborated the data obtained by SLS measurements. Core-shell microparticles could be isolated by lyophilization and potentially applied as a fat replacement and/or a delivery systems for encapsulated substances in food formulations. © 2014 Elsevier Ltd. All rights reserved. |
|---|---|
| Bibliografía: | Aberkane, L., Jasniewski, J., Gaiani, C., Hussain, R., Scher, J., Sanchez, C., Structuration mechanism of β-lactoglobulin - Acacia gum assemblies in presence of quercetin (2012) Food Hydrocolloids, 29, pp. 9-20 Akkermans, C., Van Der Goot, A.J., Venema, P., Gruppen, H., Vereijken, J.M., Van Der Linden, E., Boom, R.M., Micrometer-sized fibrillar protein aggregates from soy glycinin and soy protein isolate (2007) Journal of Agricultural and Food Chemistry, 55 (24), pp. 9877-9882. , DOI 10.1021/jf0718897 Anarjan, N., Tan, C.P., Developing a three component stabilizer system for producing astaxanthin nanodispersions (2013) Food Hydrocolloids, 30 (1), pp. 437-447 Arzeni, C., Pérez, O.E., Pilosof, A.M.R., Functionality of egg white proteins as affected by high intensity ultrasound (2012) Food Hydrocolloids, 29 (2), pp. 308-316 Aymard, P., Nicolai, T., Durand, D., Clark, A., Static and Dynamic Scattering of β-Lactoglobulin Aggregates Formed after Heat-Induced Denaturation at pH 2 (1999) Macromolecules, 32 (8), pp. 2542-2552 Berne, B.J., Pecora, R., (1976) Dynamic Light Scattering with Applications to Chemistry, Biology and Physics, , Wiley-Interscience New York Broersen, K., Van Teeffelen, A.M.M., Vries, A., Voragen, A.G.J., Hamer, R.J., De Jongh, H.H.J., Do sulfhydryl groups affect aggregation and gelation properties of ovalbumin? (2006) Journal of Agricultural and Food Chemistry, 54 (14), pp. 5166-5174. , DOI 10.1021/jf0601923 Bromley, E.H.C., Krebs, M.R.H., Donald, A.M., Aggregation across the length-scales in β-lactoglobulin (2005) Faraday Discuss., 128, pp. 13-27 Callewaert, M., Laurent-Maquin, D., Edwards-Levy, F., Albumin-alginate-coated microspheres: Resistance to steam sterilization and to lyophilization (2007) International Journal of Pharmaceutics, 344 (1-2), pp. 161-164. , DOI 10.1016/j.ijpharm.2007.05.053, PII S037851730700467X, New Trends in Drug Delivery Systems Chanasattru, W., Jones, O.G., Decker, E.A., McCelments, D.J., Impact of cosolvents on formation and porperties of biopolymer nanoparticles formed by heat treatment of β-lactoglobulin-pectin complexes (2009) Food Hydrocolloids, 23, pp. 2450-2457 Chen, L.Y., Remondetto, G.E., Subirade, M., Food protein-based material as nutraceutical delivery systems (2006) Trend Food Sci. Technol., 17 (5), pp. 272-283 Chen, C., Han, D., Cai, C., Tang, X., An overview of liposome lyophilization and its future potential (2010) J. Controlled Release, 142, pp. 299-311 Coviello, T., Matricardi, P., Marianecci, C., Alhaique, F., Polysaccharide hydrogels for modified release formulations (2007) Journal of Controlled Release, 119 (1), pp. 5-24. , DOI 10.1016/j.jconrel.2007.01.004, PII S0168365907000399 Dalgleish, D.G., The conformations of proteins on solid/water interfaces - Caseins and phosvitin on polystyrene latices (1990) Colloids Surf., 46 (2), pp. 141-155 DeGroot, A.R., Neufeld, R.J., Encapsulation of urease in alginate beads and protection from α-chymotrypsin with chitosan membranes (2001) Enzyme and Microbial Technology, 29 (6-7), pp. 321-327. , DOI 10.1016/S0141-0229(01)00393-3, PII S0141022901003933 Elzoghby, A.O., Abo El-Fotoh, W.S., Elgindy, N.A., Casein-based formulations as promising controlled release drug delivery systems (2011) J. Controlled Release, 153 (3), pp. 206-216 Emerich, D.F., Thanos, C.G., Targeted nanoparticle-based drug delivery and diagnosis (2007) Journal of Drug Targeting, 15 (3), pp. 163-183. , DOI 10.1080/10611860701231810, PII 776613309 European Union Commission, 1996. Commission Directive 96/77/EC; Galazka, V.B., Dickinson, E., Ledward, D.A., Effect of high pressure on the emulsifying behaviour of β-lactoglobulin (1996) Food Hydrocolloids, 10 (2), pp. 213-219 Goldberg, M., Langer, R., Jia, X., Nanostructured materials for applications in drug delivery and tissue engineering (2007) Journal of Biomaterials Science, Polymer Edition, 18 (3), pp. 241-268. , DOI 10.1163/156856207779996931 Gregory, J., Barany, S., Adsorption and flocculation by polymers and polymer mixtures (2011) Adv. Colloid Interface Sci., 169 (1), pp. 1-12 Gu, Y.S., Decker, A.E., McClements, D.J., Production and characterization of oil-in-water emulsions containing droplets stabilized by multilayer membranes consisting of β-lactoglobulin, l-carrageenan and gelatin (2005) Langmuir, 21 (13), pp. 5752-5760. , DOI 10.1021/la046888c Güzey, D., Kim, H.J., McClements, D.J., Factors influencing the production of o/w emulsions stabilized by β-lactoglobulin-pectin membranes (2004) Food Hydrocolloids, 18 (6), pp. 967-975 Hansen, P.M., Hidaldo, J., Gould, I.A., Reclamation of whey protein with carboxymethylcellulose (1971) J. Dairy Sci., 54, pp. 830-834 Harnsilawat, T., Pongsawatmanit, R., McClements, D.J., Characterization of β-lactoglobulin-sodium alginate interactions in aqueous solutions: A calorimetry, light scattering, electrophoretic mobility and solubility study (2006) Food Hydrocolloids, 20 (5), pp. 577-585. , DOI 10.1016/j.foodhyd.2005.05.005, PII S0268005X05000937 Heinze, T., Liebert, T., Unconventional methods in cellulose functionalization (2001) Progress in Polymer Science (Oxford), 26 (9), pp. 1689-1762. , DOI 10.1016/S0079-6700(01)00022-3, PII S0079670001000223 Ho, Q.T., Carmeliet, J., Datta, A.K., Defraeye, T., Delele, M.A., Herremans, E., Opara, L., Nicolai, B.M., Multiscale modeling in food engineering (2013) J. Food Eng., 114 (3), pp. 279-291 Hoffman, M.A.M., Van Mil, P.J.J.M., Heat-induced aggregation of β-lactoglobulin as a function of pH (1999) Journal of Agricultural and Food Chemistry, 47 (5), pp. 1898-1905. , DOI 10.1021/jf980886e Huang, X., Kakuda, Y., Cui, W., Hydrocolloids in emulsions: Particle size distribution and interfacial activity (2001) Food Hydrocolloids, 15 (4-6), pp. 533-542. , DOI 10.1016/S0268-005X(01)00091-1, PII S0268005X01000911 Hunter, R.J., (2001) Foundations of Colloid Science, , Oxford Clarendon Press Ilgin, P., Avci, G., Silan, C., Ekici, S., Aktas, N., Ayyala, R.S., John, V.T., Sahiner, N., Colloidal drug carries from (sub)micron hyaluronic acid hydrogel particles with tunable properties for biomedical applications (2011) Carbohydr. Polym., 82 (3), pp. 997-1003 ISO 6731. 1989. Milk, Cream and Evaporated Milk-Determination of Total Solids Content (Reference Method). ISO, Geneva, Switzerland; Jones, O.G., McClements, D.J., Recent progress in biopolymer nanoparticle and microparticle formation by heat-treating electrostatic protein-polysaccharide complexes (2011) Adv. Colloid Interface Sci., 167 (12), pp. 49-62 Kulkarni, G.T., Gowthamarajan, K., Dhobe, R.R., Yohanan, F., Suresh, B., Development of controlled release spheriods using natural polysaccharide as release modifier (2005) Drug Delivery: Journal of Delivery and Targeting of Therapeutic Agents, 12 (4), pp. 201-206. , DOI 10.1080/10717540590952537 Lakkis, J.M., Thies, C., Microencapsulation of flavors by complex coacervation (2007) Encapsulation and Controlled Release Technologies in Food Systems, pp. 148-170. , J.M. Lakkis, Blackwell Publishing Ltd Oxford, UK Lavaggi, M.L., Cabrera, M., Aravena, M.A., Olea-Azar, C., López De Ceráin, A., Monge, A., Pachón, G., Cerecetto, H., Study of benzo[a]phenazine 7,12-dioxide as selective hypoxic cytotoxin-scaffold. Identification of aerobic-antitumoral activity through DNA fragmentation (2010) Bioorg. Med. Chem., 18, pp. 4440-4443 Laville, M., Babin, J., Londono, I., Legros, M., Nouvel, C., Durand, A., Vanderesse, R., Six, J.-L., Polysaccharide-covered nanoparticles with improved shell stability using click-chemistry strategies (2013) Carbohydr. Polym., 93 (2), pp. 537-546 Lee, H.S., Choi, J.I., Kim, J.H., Lee, K.W., Chung, Y.J., Shin, M.H., Byun, M.W., Lee, J.W., Investigation on radiation degradation of carboxymethylcellulose by ionizing irradiation (2009) Appl. Radiat. Isot., 67, pp. 1513-1515 Leroux, J., Langendorff, V., Schick, G., Vaishnav, V., Mazoyer, J., Emulsion stabilizing properties of pectin (2003) Food Hydrocolloids, 17 (4), pp. 455-462 Lesmes, U., McClements, D.J., Controlling lipid digestibility: Response of lipid droplets coated by β-lactoglobulin-dextran Maillard conjugates to simulated gastrointestinal conditions (2012) Food Hydrocolloids, 26, pp. 221-230 Calculating Volume Distributions from Dynamic Light Scattering Data, , http://www.malvern.com, Malvern-Instruments Mandal, B., Bhattacharjee, H., Mittal, N., Sah, H., Balabathula, P., Thoma, L.A., Wood, G.C., Core-shell-type lipid-polymer hybrid nanoparticles as a drug delivery platform (2013) Nanomed.: Nanotechnol. Biol. Med., 9, pp. 474-491 Mehalebi, S., Nicolai, T., Durand, D., Light scattering study of heat-denatured globular protein aggregates (2008) Int. J. Biol. Macromol., 43, pp. 129-135 Mirabedini, S.M., Dutil, I., Farnood, R.R., Preparation and characterization of ethyl cellulose-based core shell microcapsules containing plant oils (2012) Colloids Surf., A, 394, pp. 74-84 Morita, T., Horikiri, Y., Suzuki, T., Yoshino, H., Preparation of gelatin microparticles by co-lyophilization with poly(ethylene glycol): Characterization and application to entrapment into biodegradable microspheres (2001) International Journal of Pharmaceutics, 219 (1-2), pp. 127-137. , DOI 10.1016/S0378-5173(01)00642-1, PII S0378517301006421 Murúa-Pagola, B., Beristain-Guevara, C.I., Martínez-Bustos, F., Preparation of starch derivatives using reactive extrusion and evaluation of modified starches as shell materials for encapsulation of flavoring agents by spray drying (2009) J. Food Eng., 91 (3), pp. 380-386 Navarra, G., Leone, M., Militello, V., Thermal aggregation of β-lactoglobulin in presence of metal ions (2007) Biophysical Chemistry, 131 (1-3), pp. 52-61. , DOI 10.1016/j.bpc.2007.09.003, PII S0301462207002049 Santipanichwong, R., Suphantharika, M., Weiss, J., McClements, D.J., Core-shell biopolymer nanoparticles produced by electrostatic deposition of beet pectin onto heat-denatured β-lactoglobulin aggregates (2008) J. Food Sci., 73 (6), pp. 23-30 Schokker, E.P., Singh, H., Pinder, D.N., Norris, G.E., Creamer, L.K., Characterization of intermediates formed during heat-induced aggregation of β-lactoglobulin AB at neutral pH (1999) International Dairy Journal, 9 (11), pp. 791-800. , DOI 10.1016/S0958-6946(99)00148-X, PII S095869469900148X Schokker, E.P., Singh, H., Creamer, L.K., Heat-induced aggregation of β-lactoglobulin A and B with α-lactalbumin (2000) Int. Dairy J., 10, pp. 843-853 Shapiro, L., Cohen, S., Novel alginate sponges for cell culture and transplantation (1997) Biomaterials, 18 (8), pp. 583-590. , DOI 10.1016/S0142-9612(96)00181-0, PII S0142961296001810 Sharma, M., Haque, Z.U., Wilson, W.W., Association tendency of β-lactoglobulin AB purified by gel permeation chromatography as determined by dynamic light scattering under quiescent conditions (1996) Food Hydrocolloids, 10 (3), pp. 323-328 Su, J., Huang, Z., Yuan, X.-Y., Wang, X.-Y., Li, M., Structure and properties of carboxymethyl cellulose/soy protein isolate blend edible films crosslinked by Maillard reactions (2010) Carbohydr. Polym., 79, pp. 149-153 Surroca, Y., Haverkamp, J., Heck, A.J.R., Towards the understanding of molecular mechanisms in the early stages of heat-induced aggregation of β-lactoglobulin AB (2002) Journal of Chromatography A, 970 (1-2), pp. 275-285. , DOI 10.1016/S0021-9673(02)00884-1, PII S0021967302008841 Turgeon, S.L., Beaulieu, M., Schmitt, C., Sanchez, C., Protein-polysaccharide interactions: Phase-ordering kinetics, thermodynamic and structural aspects (2003) Current Opinion in Colloid and Interface Science, 8 (4-5), pp. 401-414. , DOI 10.1016/S1359-0294(03)00093-1, PII S1359029403000931 Ubbink, J., Kruger, J., Physical approaches for the delivery of active ingredients in foods (2006) Curr. Opin. Colloid Interface Sci., 17 (2), pp. 244-254 Vásconez, M.B., Flores, S.K., Campos, C.A., Alvarado, J., Gerschenson, L.N., Antimicrobial activity and phisical properties of chitosan-tapioca starch based edible films and coatings (2009) Food Res. Int., 42 (7), pp. 762-769 Verheul, M., Roefs, S.P.F.M., De Kruif, K.G., Kinetics of heat-induced aggregation of β-lactoglobulin (1998) J. Agric. Food Chem., 46, pp. 896-903 Wu, J., Kong, T., Yeung, K.W.K., Shum, H.C., Cheung, K.M.C., Wang, L., To, M.K.T., Fabrication and characterization of monodisperse PLGA-alginate core-shell microspheres with monodisperse size and homogeneous shells for controlled drug release (2013) Acta Biomater., 9 (7), pp. 7410-7419 Ye, M., Kim, S., Park, K., Issues in long-term protein delivery using biodegradable microparticles (2010) J. Controlled Release, 146 (2), pp. 241-260 |
| ISSN: | 02608774 |
| DOI: | 10.1016/j.jfoodeng.2014.01.018 |