QSPR studies on refractive indices of structurally heterogeneous polymers

We developed a predictive Quantitative Structure-Property Relationship (QSPR) for the refractive indices of 234 structurally diverse polymers. The model involves a single molecular descriptor and a conformation-independent approach. The most appropriate polymer structure representation was investiga...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Duchowicz, P.R
Otros Autores: Fioressi, S.E, Bacelo, D.E, Saavedra, L.M, Toropova, A.P, Toropov, A.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier 2015
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:We developed a predictive Quantitative Structure-Property Relationship (QSPR) for the refractive indices of 234 structurally diverse polymers. The model involves a single molecular descriptor and a conformation-independent approach. The most appropriate polymer structure representation was investigated by considering 1-5 monomeric repeating units. The established equations were validated and tested through various well-known techniques, such as the use of an external test set of compounds, the Cross-Validation method, Y-Randomization and Applicability Domain, and finally a comparison was also performed to published results from the li terature. The developed QSPR could be useful for assisting the development of new polymeric materials. © 2014 Elsevier B.V.
Bibliografía:Knoll, W., Interfaces and thin films as seen by bound electromagnetic waves (1998) Ann. Rev. Phys. Chem., 49, pp. 569-638
Samuels, R.J., Application of refractive index measurements to polymer analysis (1981) J. Appl. Polym. Sci., 26, pp. 1383-1412
Hu, R., Lam, J.W.Y., Tang, B.Z., Recent progress in the development of new acetylenic polymers (2013) Macromol. Chem. Phys., 214, pp. 175-187
Schraub, M., Soll, S., Hampp, N., High refractive index coumarin-based photorefractive polysiloxanes (2013) Eur. Polym. J., 49, pp. 1714-1721
Sydlik, S.A., Chen, Z., Swager, T.M., Triptycene polyimides: soluble polymers with high thermal stability and low refractive indices (2011) Macromolecules, 44, pp. 976-980
van Krevelen, D.W., te Nijenhuis, K., (2009) Properties of Polymers: Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contributions, , Elsevier, New York
Hansch, C., Leo, A., Exploring QSAR (1995) Fundamentals and Applications in Chemistry and Biology, , American Chemical Society, Washington, D. C
Kubinyi, H., (2008) QSAR: Hansch Analysis and Related Approaches, , Wiley-Interscience, New York
(2010) Recent Advances in QSAR Studies: Methods and Applications, , Springer Science&Business Media B.V., Netherlands, T. Puzyn, J. Leszczynski, M.T.D. Cronin (Eds.)
Katritzky, A.R., Goordeva, E.V., Traditional topological indexes vs electronic, geometrical, and combined molecular descriptors in QSAR/QSPR research (1993) J. Chem. Inf. Comput. Sci., 33, pp. 835-857
Diudea, M.V.E., (2001) QSPR/QSAR Studies by Molecular Descriptors, , Nova Science Publishers, New York
Todeschini, R., Consonni, V., (2009) Molecular Descriptors for Chemoinformatics (Methods and Principles in Medicinal Chemistry), , Wiley-VCH, Weinheim
Golbraikh, A., Tropsha, A., Beware of q 2! (2002) J. Mol. Graphics Modell., 20, pp. 269-276
Hawkins, D.M., Basak, S.C., Mills, D.J., Assessing model fit by cross-validation (2003) Chem. Inf. Model., 43, pp. 579-586
Putz, M.V., Putz, A.-M., Lazea, M., Ienciu, L., Chiriac, A., Quantum-SAR extension of the spectral-SAR algorithm. Application to polyphenolic anticancer bioactivity (2009) Int. J. Mol. Sci., 10, pp. 1193-1214
Putz, M.V., Ionascu, C., Putz, A.-M., Ostafe, V., Alert-QSAR. Implications for electrophilic theory of chemical carcinogenesis (2011) Int. J. Mol. Sci., 12, pp. 5098-5134
Bicerano, J., (1996) Prediction of Polymer Properties, , Marcel Dekker Inc., New York
García-Domenech, R., de Julián-Ortiz, J.V., Prediction of indices of refraction and glass transition temperatures of linear polymers by using graph theoretical indices (2002) J. Phys. Chem. B, 106, pp. 1501-1507
Hawkins, D.M., The problem of overfitting (2004) J. Chem. Inf. Comput. Sci., 44, pp. 1-12
Katritzky, A.A., Sild, S., Karelson, M., Correlation and prediction of the refractive indices of polymers by QSPR (1998) J. Chem. Inf. Comput. Sci., 38, pp. 1171-1176
Xu, J., Chen, B., Zhang, Q.J., Guo, B., Prediction of refractive indices of linear polymers by a four-descriptor QSPR model (2004) Polymer, 45, pp. 8651-8659
Astray, G., Cid, A., Moldes, O., Ferreiro-Lage, J.A., Gálvez, J.F., Mejuto, J.C., Prediction of refractive index of polymers using artificial neural networks (2010) J. Chem. Eng. Data, 55, pp. 5388-5393
Duchowicz, P.R., Comelli, N.C., Ortiz, E.V., Castro, E.A., QSAR study for carcinogenicity in a large set of organic compounds (2012) Curr. Drug Saf., 7, pp. 282-288
Talevi, A., Bellera, C.L., Ianni, M.D., Duchowicz, P.R., Bruno-Blanch, L.E., Castro, E.A., An integrated drug development approach applying topological descriptors (2012) Curr. Comput. Aided Drug Des., 8, pp. 172-181
Toropov, A.A., Toropova, A.P., Benfenati, E., Gini, G., OCWLGI descriptors: theory and praxis (2013) Curr. Comput. Aided Drug Des., 9, pp. 226-232
Mullen, L.M.A., Duchowicz, P.R., Castro, E.A., QSAR treatment on a new class of triphenylmethyl-containing compounds as potent anticancer agents (2011) Chemom. Intell. Lab. Syst., 107, pp. 269-275
García, J., Duchowicz, P.R., Rozas, M.F., Caram, J.A., Mirífico, M.V., Fernández, F.M., Castro, E.A., A comparative QSAR on 1, 2, 5-thiadiazolidin-3-one 1, 1-dioxide compounds as selective inhibitors of human serine proteinases (2011) J. Mol. Graphics Modell., 31, pp. 10-19
Ibezim, E., Duchowicz, P.R., Ortiz, E.V., Castro, E.A., QSAR on aryl-piperazine derivatives with activity on malaria (2012) Chemom. Intell. Lab. Syst., 110, pp. 81-88
Toropov, A.A., Toropova, A.P., Prediction of heteroaromatic amine mutagenicity by means of correlation weighting of atomic orbital graphs of local invariants (2001) J. Mol. Struct. Theochem, 538, pp. 287-293
Toropov, A.A., Nesterov, I.V., Nabiev, O.M., QSAR modeling of dihydrofolate reductase inhibitory activity by correlation weighting of nearest neighboring codes (2003) J. Mol. Struct. Theochem, 622, pp. 269-273
Toropov, A.A., Leszczynska, D., Leszczynski, J., Predicting water solubility and octanol water partition coefficient for carbon nanotubes based on the chiral vector (2007) J. Comput. Biol. Chem., 31, pp. 127-128
Toropov, A.A., Leszczynska, D., Leszczynski, J., Predicting thermal conductivity of nanomaterials by correlation weighting technological attributes codes (2007) Mater. Lett., 61, pp. 4777-4780
Toropov, A.A., Benfenati, E., Additive, E., SMILES-based optimal descriptors in QSAR modelling bee toxicity: using rare SMILES attributes to define the applicability domain (2008) Bioorg. Med. Chem., 26, pp. 4801-4809
Toropov, A.A., Toropova, A.P., Benfenati, E., Gini, G., Puzyn, T., Leszczynska, D., Leszczynski, J., Novel application of the CORAL software to model cytotoxicity of metal oxide nanoparticles to bacteria Escherichia coli (2012) Chemosphere, 89, pp. 1098-1102
Toropov, A.A., Toropova, A.P., Martyanov, S.E., Benfenati, E., Gini, G., Leszczynska, D., Leszczynski, J., Comparison of SMILES and molecular graphs as the representation of the molecular structure for QSAR analysis for mutagenic potential of polyaromatic amines (2011) Chemom. Intell. Lab. Syst., 109, pp. 94-100
Toropova, A.P., Toropov, A.A., Martyanov, S.E., Benfenati, E., Gini, G., Leszczynska, D., Leszczynski, J., CORAL: QSAR modeling of toxicity of organic chemicals towards Daphnia magna (2012) Chemom. Intell. Lab. Syst., 110, pp. 177-181
Brandrup, J., Immergut, E.H., Grulke, E.A., (1975) Polymer Handbook, , John Wiley and Sons
http://www.insilico.eu/CORAL, (Accessed: 04-Aug-2014); Milano chemometrics and QSAR research group. VCCLAB, virtual computational chemistry laboratory, , http://michem.disat.unimib.it/chm, (Accessed: 24-July-2014)
Katritzky group, , http://www.ark.chem.ufl.edu/, (Accessed: 24-July-2014)
Rücker, C., Rücker, G., Meringer, M., Y-Randomization and its variants in QSPR/QSAR (2007) J. Chem. Inf. Model., 47, pp. 2345-2357
Gramatica, P., Principles of QSAR models validation: internal and external (2007) QSAR Comb. Sci., 26, pp. 694-701
Eriksson, L., Jaworska, J., Worth, A.P., Cronin, M.T., McDowell, R.M., Gramatica, P., Methods for reliability and uncertainty assessment and for applicability evaluations of classification-and regression-based QSARs (2003) Environ. Health Perspect., 111, pp. 1361-1375
Mercader, A.G., Duchowicz, P.R., Fernández, F.M., Castro, E.A., Advances in the replacement and enhanced replacement method in QSAR and QSPR theories (2011) J. Chem. Inf. Model., 51, pp. 1575-1581
Roy, K., On some aspects of validation of predictive quantitative structure-activity relationship models (2007) Expert Opin. Drug Discovery, 2, pp. 1567-1577
ISSN:01697439
DOI:10.1016/j.chemolab.2014.11.008