Cherry fibers isolated from harvest residues as valuable dietary fiber and functional food ingredients

Residues discarded at cherry fruit harvesting were extracted with ethanol from 'Chelan', 'Brooks' and 'Sunburst' varieties to obtain cherry fibers constituted by the cell wall polysaccharides, applicable as functional food ingredients, additives and/or dietary fibers. P...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Basanta, M.F
Otros Autores: De Escalada Plá, M.F, Raffo, M.D, Stortz, C.A, Rojas, A.M
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2014
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:Residues discarded at cherry fruit harvesting were extracted with ethanol from 'Chelan', 'Brooks' and 'Sunburst' varieties to obtain cherry fibers constituted by the cell wall polysaccharides, applicable as functional food ingredients, additives and/or dietary fibers. Powder properties were evaluated. The highest specific volume, directly related to sample porosity, corresponded to 'Brooks' fibers. These results matched the best hydration properties showed by 'Brooks'. Chemical composition may indicate a hydrogel microstructure for cherry fibers. 'Chelan' and 'Sunburst' powders showed the highest total phenolics content, 40-63% of which were bound. The FRAP-antioxidant activity determined in water was lower than that expected from the total phenolics content determined after alkaline or acid hydrolysis. Cherry fibers stabilized oil-in-water (= 50%) emulsions and showed foaming capacity. Beyond some differences observed between varieties, cherry harvesting residues constitute valuable sources of biopolymers and antioxidant compounds potentially useful as functional food ingredients and dietary fiber. © 2013 Elsevier Ltd. All rights reserved.
Bibliografía:(1990) Official Methods of Analysis, 15th Edition, , AOAC Method 923.03 Association of Official Analytical Chemists, Arlington, Virginia, USA
Basanta, M.F., De Escalada Pla, M.F., Stortz, C.A., Rojas, A.M., Chemical and functional properties of cell wall polymers from two cherry varieties at two developmental stages (2013) Carbohydr. Polym., 92, pp. 830-841
Beneke, C.E., Viljoen, A.M., Hamman, J.H., Polymeric plant-derived excipients in drug delivery (2009) Molecules, 14, pp. 2602-2620
Biswas, A.K., Kumar, V., Bhosle, S., Sahoo, J., Chatli, M.K., Dietary fibers as functional ingredients in meat products and their role in human health (2011) Int. J. Livestock Prod., 2, pp. 45-54
Bravo, L., Goya, L., Lecumberri, E., LC/MS characterization of phenolic constituents of mate (Ilex paraguariensis, St. Hil.) and its antioxidant activity compared to commonly consumed beverages (2007) Food Research International, 40 (3), pp. 393-405. , DOI 10.1016/j.foodres.2006.10.016, PII S0963996906001864
Cadden, A.M., Comparative effects of particle size reduction on physical structure and water binding properties of several plant fibers (1987) J. Food Sci., 52, pp. 595-1599
Cittadini, E.D., (2007) Sweet Cherries from the End of the World: Options and Constraints for Fruit Production Systems in South Patagonia, Argentina, , Ph.D. thesis, Wageningen University, Netherlands
Chau, C.F., Wang, Y.T., Wen, Y.L., Different micronization methods significantly improve the functionality of carrot insoluble fibre (2007) Food Chem., 100, pp. 1402-1408
De Escalada Pla, M.F., González, P., Sette, P., Portillo, F., Rojas, A.M., Gerschenson, L.N., Effect of processing on physico-chemical characteristics of dietary fibre concentrates obtained from peach (Prunus persica L.) peel and pulp (2012) Food Res. Int., 49, pp. 184-192
De Escalada Pla, M.F., Rojas, A.M., Gerschenson, L.N., Effect of butternut (Cucurbita moschata Duchesne ex Poiret) fibres on bread-making, quality and staling (2013) Food Bioprocess Technol., 6, pp. 828-838
Elleuch, M., Bedigian, D., Roiseux, O., Besbes, S., Blecker, Ch., Attia, H., Dietary fibre and fibre-rich by-products of food processing: Characterization, technological functionality and commercial applications: A review (2011) Food Chem., 124, pp. 411-421
Fissore, E.N., Rojas, A.M., Gerschenson, L.N., Williams, P.A., Butternut and beetroot pectins: Characterization and functional properties (2013) Food Hydrocolloids, 31, pp. 172-182
Guillon, F., Champ, M., Structural and physical properties of dietary fibres, and consequences of processing on human physiology (2000) Food Research International, 33 (3-4), pp. 233-245. , DOI 10.1016/S0963-9969(00)00038-7, PII S0963996900000387
Greenspan, L., Humidity fixed points of binary saturated aqueous solutions (1977) J. Res. Natl. Bureau Stand., 81 (A1), pp. 89-96
Hancock, B.C., Colvin, J.T., Mullarney, M.P., Zinchuk, A.V., The relative densities of pharmaceutical powders, blends, dry granulations, and immediate-release tablets (2003) Pharm. Technol., 4, pp. 64-80
Jabbari, E., Nozari, S., Swelling behavior of acrylic acid hydrogels prepared by g-radiation crosslinking of polyacrylic acid in aqueous solution (2000) Eur. Polymer J., 36, pp. 2685-2692
John, M.J., Thomas, S., Biofibres and biocomposites (2008) Carbohydrate Polymers, 71 (3), pp. 343-364. , DOI 10.1016/j.carbpol.2007.05.040, PII S0144861707002974
Karadag, E., Uzum, O.B., Saraydin, D., Swelling equilibria and dye adsorption studies of chemically crosslinked superabsorbent acrylamide/maleic acid hydrogels (2002) European Polymer Journal, 38 (11), pp. 2133-2141. , DOI 10.1016/S0014-3057(02)00117-9, PII S0014305702001179
Kim, C., Yoo, B., Rheological properties of rice starch-xanthan gum mixtures (2006) Journal of Food Engineering, 75 (1), pp. 120-128. , DOI 10.1016/j.jfoodeng.2005.04.002, PII S0260877405002293
Kohajdová, Z., Karovičová, J., Jurasová, M., Influence of carrot pomace powder on the rheological characteristics of wheat flour dough and on wheat rolls quality (2012) ACTA Sci. Polon. Technol. Aliment., 11, pp. 381-387
Labuza, T.P., McNally, L., Gallagher, D., Hawkes, J., Hurtado, F., Stability of intermediate moisture foods. 1. Lipid oxidation (1972) J. Food Sci., 37, pp. 154-159
Latorre, M.E., De Escalada Pla, M.F., Rojas, A.M., Gerschenson, L.N., Blanching of red beet (Beta vulgaris L. Var. Conditiva) root. Blanching of red beet (Beta vulgaris L. Var. Conditiva) root. Effect of hot water or microwave radiation on cell wall characteristics (2013) LWT - Food Sci. Technol., 50, pp. 193-203
Laufenberg, G., Kunz, B., Nystroem, M., Transformation of vegetable waste into value added products: (A) the upgrading concept; (B) practical implementations (2003) Bioresource Technology, 87 (2), pp. 167-198. , DOI 10.1016/S0960-8524(02)00167-0, PII S0960852402001670
Lebesi, D.M., Tzia, C., Use of endoxylanase treated cereal brans for development of dietary fiber enriched cakes (2012) Innovative Food Sci. Emerg. Technol., 13, pp. 207-214
Lowry, O.H., Rosebrough, N.J., Farra, L., Randall, R.J., Protein measurement with the Folin phenol reagent (1951) J. Biol. Chem., 193, pp. 265-275
Mattheis, J., Fellman, J., 2 Cherry (Sweet) (2004) Commercial Storage of Fruits, Vegetables, and Florist and Nursery Stocks, , USDA, ARS. Agriculture Handbook Number 66
Merkus, H.G., (2009) Particle Size Measurements: Fundamentals, Practice, Quality, , Particle Technology Series, Springer Science+Business Media BV
Ng, A., Parr, A.J., Ingham, L.M., Rigby, N.M., Waldron, K.W., Cell Wall Chemistry of Carrots (Daucus carota Cv. Amstrong) during Maturation and Storage (1998) Journal of Agricultural and Food Chemistry, 46 (8), pp. 2933-2939
Prakongpan, T., Nitithamyong, A., Luangpituksa, P., Extraction and application of dietary fiber and cellulose from pineapple cores (2002) Journal of Food Science, 67 (4), pp. 1308-1313
Pulido, R., Bravo, L., Saura-Calixto, F., Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay (2000) J. Agri. Food Chem., 48, pp. 3396-3402
Raghavendra, S.N., Rastogi, N.K., Raghavarao, K.S.M.S., Tharanathan, R.N., Dietary fiber from coconut residue: Effects of different treatments and particle size on the hydration properties (2004) European Food Research and Technology, 218 (6), pp. 563-567. , DOI 10.1007/s00217-004-0889-2
Ritger, P.L., Peppas, N.A., A simple equation for desciption of solute release I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs (1987) Journal of Controlled Release, 5 (1), pp. 23-36. , DOI 10.1016/0168-3659(87)90034-4
Robards, K., Strategies for the determination of bioactive phenols in plants, fruit and vegetables (2003) Journal of Chromatography A, 1000 (1-2), pp. 657-691. , DOI 10.1016/S0021-9673(03)00058-X
Rojas, A.M., Gerschenson, L.N., Determinación de vitamina C en productos frutihortícolas (1991) An. Asoc. Quím. Argent., 79 (2), pp. 97-106
Serrano, M., Guillen, F., Martinez-Romero, D., Castillo, S., Valero, D., Chemical constituents and antioxidant activity of sweet cherry at different ripening stages (2005) Journal of Agricultural and Food Chemistry, 53 (7), pp. 2741-2745. , DOI 10.1021/jf0479160
Thebaudin, J.Y., Lefebvre, A.C., Harrington, M., Bourgeois, C.M., Dietary fibres: Nutritional and technological interest (1997) Trends in Food Science and Technology, 8 (2), pp. 41-48. , DOI 10.1016/S0924-2244(97)01007-8, PII S0924224497010078
Tsao, R., Yang, R., Xie, S., Sockovie, E., Khanizadeh, S., Which polyphenolic compounds contribute to the total antioxidant activities of apple? (2005) Journal of Agricultural and Food Chemistry, 53 (12), pp. 4989-4995. , DOI 10.1021/jf048289h
(2011) Stone Fruit: World Markets and Trade, , http://www.fas.usda.gov/htp/2011StoneFruit.pdf, USDA Foreign Agricultural Services (September)
Usenik, V., Fabcic, J., Stampar, F., Sugars, organic acids, phenolic composition and antioxidant activity of sweet cherry (Prunus avium L.) (2008) Food Chemistry, 107 (1), pp. 185-192. , DOI 10.1016/j.foodchem.2007.08.004, PII S0308814607007790
Vetter, S., Kunzek, H., The influence of suspension solution conditions on the rehydration of apple cell wall material (2003) European Food Research and Technology, 216 (1), pp. 39-45
Willats, W.G.T., Knox, J.P., Mikkelsen, J.D., Pectin: New insights into an old polymer are starting to gel (2006) Trends in Food Science and Technology, 17 (3), pp. 97-104. , DOI 10.1016/j.tifs.2005.10.008, PII S0924224405002517
Williams, P.A., Sayers, C., Viebke, C., Senan, C., Mazoyer, J., Boulenguer, P., Elucidation of the emulsification properties of sugar beet pectin (2005) Journal of Agricultural and Food Chemistry, 53 (9), pp. 3592-3597. , DOI 10.1021/jf0404142
(2012) S.3.6. Bulk Density and Tapped Density of Powders. Final Text for Addition to the International Pharmacopoeia, Document QAS/11.450 Final, , World Health Organization March 2012
Yanishlieva-Maslarova, N.V., Inhibiting oxidation (2001) Antioxidants in Foods, pp. 46-48. , Jan Pokorny, Nedyalka Yanishlieva & Michael Gordon (Eds.) CRC Press, Woodhead Publishing Limited, Cambridge, England; Chapter 3
ISSN:02608774
DOI:10.1016/j.jfoodeng.2013.11.010