Scale interactions in magnetohydrodynamic turbulence

This article reviews recent studies of scale interactions in magnetohydrodynamic turbulence. The present-day increase of computing power, which allows for the exploration of different configurations of turbulence in conducting flows, and the development of shell-to-shell transfer functions, has led...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Mininni, P.D
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2011
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:This article reviews recent studies of scale interactions in magnetohydrodynamic turbulence. The present-day increase of computing power, which allows for the exploration of different configurations of turbulence in conducting flows, and the development of shell-to-shell transfer functions, has led to detailed studies of interactions between the velocity and the magnetic field and between scales. In particular, processes such as induction and dynamo action, the damping of velocity fluctuations by the Lorentz force, and the development of anisotropies can be characterized at different scales. In this context we consider three different configurations often studied in the literature: mechanically forced turbulence, freely decaying turbulence, and turbulence in the presence of a uniform magnetic field. Each configuration is of interest for different geophysical and astrophysical applications. Local and nonlocal transfers are discussed for each case. Whereas the transfer between scales of solely kinetic or solely magnetic energy is local, transfers between kinetic and magnetic fields are observed to be local or nonlocal depending on the configuration. Scale interactions in the cascade of magnetic helicity are also reviewed. Based on the results, the validity of several usual assumptions in hydrodynamic turbulence, such as isotropy of the small scales or universality, is discussed. © 2011 by Annual Reviews. All rights reserved.
Bibliografía:Alexakis, A., Nonlocal phenomenology for anisotropic magnetohydrodynamic turbulence (2007) Astrophys. J., 667, pp. L93-96
Alexakis, A., Bigot, B., Politano, H., Galtier, S., Anisotropic fluxes and nonlocal interactions in magneto-hydrodynamic turbulence (2007) Phys. Rev. e, 76, p. 056313
Alexakis, A., Mininni, P.D., Pouquet, A., Imprint of large-scale flows on turbulence (2005) Phys. Rev. Lett., 95, p. 264503
Alexakis, A., Mininni, P.D., Pouquet, A., Shell to shell energy transfer in MHD. I. Steady state turbulence (2005) Phys. Rev. e, 72, p. 046301
Alexakis, A., Mininni, P.D., Pouquet, A., On the inverse cascade of magnetic helicity (2006) Astrophysical Journal, 640 (I1), pp. 335-343. , DOI 10.1086/500082
Alexakis, A., Mininni, P.D., Pouquet, A., Turbulent cascades, transfer, and scale interactions in magneto-hydrodynamics (2007) New J. Phys., 9, p. 298
Aluie, H., Eyink, G.L., Localness of energy cascade in hydrodynamic turbulence. II. Sharp spectral filter (2009) Phys. Fluids, 21, p. 115108
Aluie, H., Eyink, G.L., Scale locality of magnetohydrodynamic turbulence (2010) Phys. Rev. Lett., 104, p. 081101
Batchelor, G.K., On the spontaneous magnetic field in a conducting liquid in turbulent motion (1950) Proc. R. Soc. Lond. Ser.A, 201, pp. 405-16
Beresnyak, A., Lazarian, A., Comparison of spectral slopes of magnetohydrodynamic and hydrodynamic turbulence and measurements of alignment effects (2009) Astrophys. J., 702, pp. 1190-98
Boldyrev, S., Spectrum of magnetohydrodynamic turbulence (2006) Phys. Rev. e, 96, p. 115002
Brandenburg, A., The inverse cascade and nonlinear α-effect in simulations of isotropic helical hydro-magnetic turbulence (2001) Astrophys. J., 550, pp. 824-40
Brandenburg, A., Subramanian, K., Astrophysical magnetic fields and nonlinear dynamo theory (2005) Physics Reports, 417 (1-4), pp. 1-209. , DOI 10.1016/j.physrep.2005.06.005, PII S037015730500267X
Bruno, R., Carbone, V., The solar wind as a turbulence laboratory (2005) Living Rev. Solar Phys., 2, p. 4
Carati, D., Debliquy, O., Knaepen, B., Teaca, B., Verma, M., Energy transfers in forced MHD turbulence (2006) J. Turbul., 7, p. 51
Carlier, J., Laval, J.-P., Stanislas, M., Some experimental support at a high Reynolds number to a new hypothesis for turbulence modeling (2001) Comptes Rendus de l'Academie de Sciences - Serie IIb: Mecanique, 329 (1), pp. 35-40. , DOI 10.1016/S1620-7742(00)01281-2
Chandrasekhar, S., The invariant theory of isotropic turbulence in magnetohydrodynamics (1951) Proc. R. Soc. Lond. Ser. A, 204, pp. 435-49
Childress, S., Gilbert, A.D., (1995) Stretch, Twist, Fold: The Fast Dynamo, , Berlin: Springer- Verlag
Dar, G., Verma, M.K., Eswaran, V., Energy transfer in two-dimensional magnetohydrodynamic turbulence: Formalism and numerical results (2001) Physica D: Nonlinear Phenomena, 157 (3), pp. 207-225. , DOI 10.1016/S0167-2789(01)00307-4, PII S0167278901003074
Debliquy, O., Verma, M.K., Carati, D., Energy fluxes and shell-to-shell transfers in three-dimensional decaying magnetohydrodynamic turbulence (2005) Phys. Plasmas, 12, p. 042309
Dmitruk, P., Gómez, D.O., Matthaeus, W.H., Energy spectrum of turbulent fluctuations in boundary driven reduced magnetohydrodynamics (2003) Phys. Plasmas, 10, pp. 3584-91
Domaradzki, J.A., Analysis of energy transfer in direct numerical simulations of isotropic turbulence (1988) Phys. Fluids, 31, pp. 2747-49
Domaradzki, J.A., Carati, D., An analysis of the energy transfer and the locality of nonlinear interactions in turbulence (2007) Phys. Fluids, 19, p. 085112
Domaradzki, J.A., Carati, D., A comparison of spectral sharp and smooth filters in the analysis of nonlinear interactions and energy transfer in turbulence (2007) Phys. Fluids, 19, p. 085111
Domaradzki, J.A., Rogallo, R.S., Local energy transfer and nonlocal interactions in homogeneous, isotropic turbulence (1990) Phys. Fluids, 2, pp. 413-26
Eyink, G.L., Energy dissipation without viscosity in ideal hydrodynamics I. Fourier analysis and local energy transfer (1994) Physica D, 78, pp. 222-40
Eyink, G.L., Locality of turbulent cascades (2005) Physica D: Nonlinear Phenomena, 207 (1-2), pp. 91-116. , DOI 10.1016/j.physd.2005.05.018, PII S0167278905002253
Eyink, G.L., Aluie, H., Localness of energy cascade in hydrodynamic turbulence. I. Smooth coarse graining (2009) Phys. Fluids, 21, p. 115107
Galtier, S., Nazarenko, S.V., Newell, A.C., Pouquet, A., A weak turbulence theory for incompressible mag-netohydrodynamics (2000) J. Plasma Phys., 63, pp. 447-88
Galtier, S., Pouquet, A., Mangeney, A., On spectral scaling laws for incompressible anisotropic magneto-hydrodynamic turbulence (2005) Phys. Plasmas, 12, p. 092310
Ghosh, S., Matthaeus, W.H., Montgomery, D.C., The evolution of cross helicity in driven/dissipative two-dimensional magnetohydrodynamics (1988) Phys. Fluids, 31, pp. 2171-84
Goldreich, P., Sridhar, P., Toward a theory of interstellar turbulence. 2. Strong Alfvenic turbulence (1995) Astrophys. J., 438, pp. 763-75
Gomez, D.O., Mininni, P.D., Direct numerical simulations of helical dynamo action: MHD and beyond (2004) Nonlinear Processes in Geophysics, 11 (5-6), pp. 619-629
Gomez, T., Politano, H., Pouquet, A., On the validity of a nonlocal approach for MHD turbulence (1999) Physics of Fluids, 11 (8), pp. 2298-2306
Graham, J.P., Cameron, R., Schuessler, M., Turbulent small-scale dynamo action insolar surface simulations (2010) Astrophys. J., 714, pp. 1606-16
Graham, J.P., Mininni, P.D., Pouquet, A., Lagrangian-averaged model for magnetohydrodynamic turbulence and the absence of bottlenecks (2009) Phys. Rev. e, 80, p. 016313
Grappin, R., Pouquet, A., Léorat, J., Dependence on correlation of MHD turbulence spectra (1983) Astron. Astrophys., 126, pp. 51-56
Haugen, N.E.L., Brandenburg, A., Dobler, W., Is nonhelical hydromagnetic turbulence peaked at small scales? (2003) Astrophysical Journal, 597 (II2), pp. L141-L144. , DOI 10.1086/380189
Haugen, N.E.L., Brandenburg, A., Dobler, W., Simulations of nonhelical hydromagnetic turbulence (2004) Phys. Rev. e, 70, p. 016308
Iroshnikov, P.S., Turbulence of a conducting fluid in a strong magnetic field (1963) Sov. Astron., 7, pp. 566-71
Kazanstev, A.P., Enhancement of a magnetic field by a conducting fluid (1968) Sov. Phys. JETP, 26, pp. 1031-34
Kinney, R., McWilliams, J.C., Tajima, T., Coherent structures and turbulent cascades in two-dimensional incompressible magnetohydrodynamic turbulence (1995) Phys. Plasmas, 2, pp. 3623-39
Knaepen, B., Moreau, R.J., Magnetohydrodynamic turbulence at low magnetic Reynolds number (2008) Annual Review of Fluid Mechanics, 40, pp. 25-45. , DOI 10.1146/annurev.fluid.39.050905.110231
Kraichnan, R.H., The structure of isotropic turbulence at very high Reynolds numbers (1959) J. Fluid Mech., 5, pp. 497-543
Kraichnan, R.H., Inertial-range spectrum of hydromagnetic turbulence (1965) Phys. Fluids, 8, pp. 1385-87
Krause, F., Raedler, K.H., (1980) Mean-Field Magnetohydrodynamics and Dynamo Theory, , New York: Pergamon
Lee, E., Brachet, M.E., Pouquet, A., Mininni, P.D., Lack of universality in decaying magnetohydrodynamic turbulence (2009) Phys. Rev. e, 81, p. 016318
Lessinnes, T., Carati, D., Verma, M.K., Energy transfers in shell models for magnetohydrodynamic turbulence (2009) Phys. Rev. e, 79, p. 066307
Mason, J., Cattaneo, F., Boldyrev, S., Dynamic alignment in driven magnetohydrodynamic turbulence (2006) Phys. Rev. Lett., 97, p. 255002
Mason, J., Cattaneo, F., Boldyrev, S., Numerical measurements of the spectrum in magnetohydrodynamic turbulence (2008) Phys. Rev. e, 77, p. 036403
Matthaeus, W.H., Montgomery, D., Selective decay hypothesis at high mechanical and magnetic Reynolds numbers (1980) Ann. N. Y. Acad. Sci., 357, pp. 203-22
Matthaeus, W.H., Pouquet, A., Mininni, P.D., Dmitruk, P., Breech, B., Rapid alignment of velocity and magnetic field in magnetohydrodynamic turbulence (2008) Phys. Rev. Lett., 100, p. 085003
Matthaeus, W.H., Zhou, Y., Extended inertial range phenomenology of magnetohydrodynamic turbulence (1989) Phys. Fluids B, 1, pp. 1929-31
Meneguzzi, M., Frisch, U., Pouquet, A., Helical and nonhelical turbulent dynamos (1981) Phys. Rev. Lett., 47, pp. 1060-64
Milano, L.J., Matthaeus, W.H., Dmitruk, P., Montgomery, D.C., Local anisotropy in incompressible magnetohydrodynamic turbulence (2001) Physics of Plasmas, 8 (6), pp. 2673-2681. , DOI 10.1063/1.1369658
Mininni, P.D., Alexakis, A., Pouquet, A., Shell to shell energy transfer in MHD. II. Kinematic dynamo (2005) Phys. Rev. e, 72, p. 046302
Mininni, P.D., Alexakis, A., Pouquet, A., Large-scale flow effects, energy transfer, and self-similarity on turbulence (2006) Phys. Rev. e, 74, p. 016303
Mininni, P.D., Alexakis, A., Pouquet, A., Energy transfer in Hall-MHD turbulence: Cascades, backscatter, and dynamo action (2007) Journal of Plasma Physics, 73 (3), pp. 377-401. , DOI 10.1017/S0022377806004624, PII S0022377806004624
Mininni, P.D., Alexakisa Pouquet, A., Nonlocal interactions inhydrodynamic turbulence at high Reynolds numbers: The slow emergence of scaling laws (2008) Phys. Rev. e, 77, p. 036306
Mininni, P.D., Montgomery, D.C., Pouquet, A., Numerical solutions of the three-dimensional magneto-hydrodynamic α model (2005) Phys. Rev. e, 71, p. 046304
Mininni, P.D., Montgomery, D.C., Pouquet, A., A numerical study of the α model for two-dimensional magnetohydrodynamic turbulent flows (2005) Phys. Fluids, 17, p. 035112
Mininni, P.D., Pouquet, A., Energy spectra stemming from interactions of Alfven waves and turbulent eddies (2007) Phys. Rev. Lett., 99, p. 254502
Mininni, P.D., Pouquet, A., Finite dissipation and intermittency in magnetohydrodynamics (2009) Phys. Rev. e, 80, p. 025401
Moffatt, H.K., (1978) Magnetic Field Generation in Electrically Conducting Fluids, , Cambridge, UK: Cambridge Univ. Press
Moffatt, H.K., Saffman, P.G., Comment on "growth of a weak magnetic field in a turbulent conducting fluid with large magnetic Prandtl number." (1964) Phys. Fluids, 7, p. 155
Monchaux, R., Berhanu, M., Bourgoin, M., Moulin, M., Odier, P., Generation of a magnetic field by dynamo action in a turbulent flow of liquid sodium (2007) Phys. Rev. Lett., 98, p. 044502
Müller, W.C., Biskamp, D., Grappin, R., Statistical anisotropy of magnetohydrodynamic turbulence (2003) Phys. Rev. e, 67, p. 066302
Müller, W.C., Grappin, R., Spectral energy dynamics in magnetohydrodynamic turbulence (2005) Phys. Rev. Lett., 95, p. 114502
Nazarenko, S.V., Newell, A.C., Galtier, S., Non-local MHD turbulence (2001) Physica D: Nonlinear Phenomena, 152-153, pp. 646-652. , DOI 10.1016/S0167-2789(01)00197-X, PII S016727890100197X
Ohkitani, K., Kida, S., Triad interactions in a forced turbulence (1992) Phys. Fluids A, 4, pp. 794-802
Perez, J.C., Boldyrev, S., Role of cross-helicity in magnetohydrodynamic turbulence (2009) Phys. Rev. Lett., 102, p. 025003
Plunianf Stepanov, R., A non-local shell model of hydrodynamic and magnetohydrodinamic turbulence (2007) New J. Phys., 9, p. 294
Podesta, J.J., Roberts, D.A., Goldstein, M.L., Spectral exponents of kinetic and magnetic energy spectra in solar wind turbulence (2007) Astrophys. J., 664, pp. 543-48
Politano, H., Pouquet, A., Dynamical length scales for turbulent magnetized flows (1998) Geophysical Research Letters, 25 (3), pp. 273-276
Politano, H., Pouquet, A., Von Kármán-Howarth equation for magnetohydrodynamics and its consequences on third-order longitudinal structure and correlation functions (1998) Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 57 (1), pp. R21-R24
Poulain, C., Mazellier, N., Chevillard, L., Gagne, Y., Baudet, C., Dynamics of spatial Fourier modes in turbulence : Sweeping effect, long-time correlations and temporal intermittency (2006) European Physical Journal B, 53 (2), pp. 219-224. , DOI 10.1140/epjb/e2006-00354-y
Pouquet, A., Frisch, U., Léorat, J., Strong MHD helical turbulence and the nonlinear dynamo effect (1976) J. Fluid Mech., 77, pp. 321-54
Pouquet, A., Meneguzzi, M., Frisch, U., The growth of correlations in MHD turbulence (1986) Phys. Rev.A, 33, pp. 4266-76
Schekochihin, A., Cowley, S.C., Yousef, T.A., MHD turbulence: Nonlocal, anisotropic, nonuniversalIn IUTAM Symp (2008) Comput. Phys. New Perspect. Turbul., pp. 347-54. , ed. Y Kaneda Dordrecht, The Neth.: Springer
Schekochihin, A.A., Cowley, S.C., Hammett, G.W., Maron, J.L., McWilliams, J.C., A model of nonlinear evolution and saturation of the turbulent MHD dynamo (2002) New J. Phys., 4, pp. 1-22
Schekochihin, A.A., Cowley, S.C., Taylor, S.F., Maron, J.L., McWilliams, J.C., Simulations of the small-scale turbulent dynamo (2004) Astrophysical Journal, 612 (I1), pp. 276-307. , DOI 10.1086/422547
Schekochihin, A.A., Maron, J.L., Cowley, S.C., McWilliams, J.C., The small-scale structure of magnetohydrodynamic turbulence with large magnetic Prandtl numbers (2002) Astrophysical Journal, 576 (I2), pp. 806-813. , DOI 10.1086/341814
Servidio, S., Matthaeus, W.H., Dmitruk, P., Depression of nonlinearity in decaying isotropic MHD turbulence (2008) Phys. Rev. Lett., 100, p. 095005
Shebalin John, V., Matthaeus William, H., Montgomery David, ANISOTROPY IN MHD TURBULENCE DUE TO A MEAN MAGNETIC FIELD (1983) Journal of Plasma Physics, 29 (PART 3), pp. 525-547
Shen, X., Warhaft, Z., The anisotropy of the small-scale structure in high Reynolds number (ra; ∼ 1000) turbulent shear flow (2000) Phys. Fluids, 12, pp. 2976-89
Steenbeck, M., Krause, F., Rädler, K.H., Berechnung der mittleren Lorentz-Feldstaerke v × b fuer ein elektrisch leitendendes Medium in turbulenter, durch Coriolis-Kraefte beeinflußter Bewegung (1966) Z. Naturforsch., 21 A, pp. 369-76
Stepanov, R., Plunian, F., Phenomenology of turbulent dynamo growth and saturation (2008) Astrophys. J., 680, pp. 809-15
Stribling, T., Matthaeus, W.H., Relaxation processes in a low-order three-dimensional magnetohydrody-namics model (1991) Phys. Fluids B, 3, pp. 1848-64
Strumik, M., MacEk, W.M., Statistical analysisoftransfer offluctuationsinsolar wind turbulence.Nonlinear Process (2008) Geophys., 15, pp. 607-13
Strumik, M., MacEk, W.M., Testing for Markovian character and modeling of intermittency in solar wind turbulence (2008) Phys. Rev. e, 78, p. 026414
Teaca, B., Verma, M.K., Knaepen, B., Carati, D., Energy transfer in anisotropic magnetohydrodynamic turbulence (2009) Phys. Rev. e, 79, p. 046312
Ting, A.C., Matthaeus, W.H., Montgomery, D., Turbulent relaxation processes in magnetohydrodynamics (1986) Phys. Fluids, 29, pp. 3261-74
Vainshtein, S.I., Zeldovich, Y.B., Origin of magnetic fields in astrophysics (1972) Sov. Phys. Usp., 15, pp. 159-72
Verma, M.K., Field theoretic calculation of energy cascade rates in non-helical magnetohydrodynamic turbulence (2003) Pramana, 61, pp. 577-94
Verma, M.K., Statistical theory of magnetohydrodynamic turbulence: Recent results (2004) Physics Reports, 401 (5-6), pp. 229-380. , DOI 10.1016/j.physrep.2004.07.007, PII S0370157304003163
Verma, M.K., Ayyer, A., Chandra, A.V., Energy transfers and locality in magnetohydrodynamic turbulence (2005) Phys. Plasmas, 12, p. 082307
Wiltse, J.M., Glezer, A., Manipulation of free shear flows using piezoelectric actuators (1993) J. Fluid Mech., 249, pp. 261-85
Wiltse, J.M., Glezer, A., Direct excitation of small-scale motions in free shear flows (1998) Physics of Fluids, 10 (8), pp. 2026-2036
Yeung, P.K., Brasseur, J.G., Qunzhen Wang, Dynamics of direct large-small scale couplings in coherently forced turbulence: concurrent physical- and Fourier-space views (1995) Journal of Fluid Mechanics, 283, pp. 43-95
Yousef, T.A., Rincon, F., Schekochihin, A.A., Exact scaling laws and the local structure of isotropic magnetohydrodynamic turbulence (2007) Journal of Fluid Mechanics, 575, pp. 111-120. , DOI 10.1017/S0022112006004186, PII S0022112006004186
Zel'dovich, Ya.B., Ruzmaikin, A.A., Molchanov, S.A., Sokoloff, D.D., KINEMATIC DYNAMO PROBLEM IN A LINEAR VELOCITY FIELD (1984) Journal of Fluid Mechanics, 144, pp. 1-11
Zhou, Y., Interacting scales and energy transfer in isotropic turbulence (1993) Phys. Fluids A, 5, pp. 2511-24
Zhou, Y., Matthaeus, W.H., Dmitruk, P., Colloquium: Magnetohydrodynamic turbulence and time scales in astrophysical and space plasmas (2004) Reviews of Modern Physics, 76 (4), pp. 1015-1035. , http://scitation.aip.org/getpdf/servlet/GetPDFServlet?filetype= pdf&id=RMPHAT000076000004001015000001&idtype=cvips, DOI 10.1103/RevModPhys.76.1015
ISSN:00664189
DOI:10.1146/annurev-fluid-122109-160748