Theoretical study of the magnetic properties of water molecules in non-uniform magnetic fields

The interaction Hamiltonian within the Bloch gauge for the potentials of the electromagnetic field has been used to define electromagnetic multipole moment operators and operators for the magnetic field of electrons acting on the nuclei of a molecule. Perturbation theory has been applied to evaluate...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Caputo, María Cristina
Otros Autores: Ferraro, Marta Beatriz, Lazzeretti, Paolo, Malagoli, M., Zanasi, R.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 1994
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:The interaction Hamiltonian within the Bloch gauge for the potentials of the electromagnetic field has been used to define electromagnetic multipole moment operators and operators for the magnetic field of electrons acting on the nuclei of a molecule. Perturbation theory has been applied to evaluate the induced electronic moments and magnetic field at the nuclei. Multipole magnetic susceptibility and nuclear magnetic shielding tensors have been defined to describe the contributions arising in non-uniform magnetic fields, and their origin dependence has been analyzed. Extended numerical tests on the water molecule in a static, non-uniform magnetic field have been carried out, using the random-phase approximation within the framework of accurate Hartree-Fock zero-order wavefunctions. © 1994.
Bibliografía:Van Vleck, (1932) The Theory of the Electric and Magnetic Susceptibilities, , Oxford University Press
Ramsey, (1950) Phys. Rev., 78, p. 699
Ramsey, (1952) Phys. Rev., 86, p. 243
Ramsey, (1956) Molecular Beams, , Oxford University Press, London
Ramsey, (1970) Phys. Rev. A, 1, p. 1320
Ẑaucer, Aẑman, Magnetic-field-dependent molecular susceptibility (1977) Physical Review A, 16, p. 475
Lazzeretti, Zanasi, (1985) Phys. Rev. A, 32, p. 2607
Lazzeretti, (1987) Adv. Chem. Phys., 75, p. 507
b P. Lazzeretti, Theor. Chim. Acta, in press; Bloch, (1961) W. Heisenberg und die Physik unserer Zeit, p. 93. , Friedr. Vieweg & Sohn, Braunschweig
Buckingham, Stiles, Magnetic multipoles and the ‘pseudo-contact’ chemical shift (1972) Molecular Physics, 24, p. 99
Barron, Gray, (1973) J. Phys. A, Math. Nucl. Gen., 6, p. 59
Woolley, (1973) J. Phys. B, 6, p. L97
Frenkel, (1926) Lehrbuch der Elektrodynamik, 1. , Springer, Berlin
Jansen, (1957) Physica, 23, p. 599
Kielich, Non-linear processes to result from multipole interactions between molecules and electromagnetic fields (1970) Proceedings of the Physical Society, 86, p. 709
Radt, Hurst, (1970) Phys. Rev. A, 2, p. 696
McConnell, (1957) J. Chem. Phys., 27, p. 226
Raab, Magnetic multipole moments (1975) Molecular Physics, 29, p. 1323. , and references cited therein
Rowe, (1968) Rev. Mod. Phys., 40, p. 153
Epstein, (1974) The Variation Method in Quantum Chemistry, , Academic Press, New York
Hehre, Radom, von R. Schleyer, Pople, (1986) Ab initio Molecular Orbital Theory, , Wiley, New York
Sadlej, Medium-size polarized basis sets for high-level correlated calculations of molecular electric properties (1988) Collection of Czechoslovak Chemical Communications, 53, p. 1995
Lazzeretti, Zanasi, Analytic dipole moment geometric derivatives from nuclear electric shielding in molecules (1986) The Journal of Chemical Physics, 84, p. 3916
Lazzeretti, Zanasi, Analytic dipole moment geometric derivatives from nuclear electric shielding in molecules. II. Application to two-heavy atom molecules (1986) The Journal of Chemical Physics, 85, p. 5932
van Duijneveldt, (1971) IBM Res. Rep., RJ, p. 945
Lazzeretti, Zanasi, (1986) Phys. Rev. A, 33, p. 3727
Ferraro, Herr, Lazzeretti, Malagoli, Zanasi, (1992) Phys. Rev. A, 45, p. 6272
ISSN:01661280
DOI:10.1016/0166-1280(94)80144-4