Coherent control of single molecules at room temperature

The detection of individual molecules allows to unwrap the inhomogeneously broadened ensemble and reveal the spatial disorder and temporal dynamics of single entities. During 20 years of increasing sophistication this approach has provided valuable insights into biomolecular interactions, cellular p...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Brinks, D.
Otros Autores: Hildner, R., Stefani, F.D, Van Hulst, N.F
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2011
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:The detection of individual molecules allows to unwrap the inhomogeneously broadened ensemble and reveal the spatial disorder and temporal dynamics of single entities. During 20 years of increasing sophistication this approach has provided valuable insights into biomolecular interactions, cellular processes, polymer dynamics, etc. Unfortunately the detection of fluorescence, i.e. incoherent spontaneous emission, has essentially kept the time resolution of the single molecule approach out of the range of ultrafast coherent processes. In parallel coherent control of quantum interferences has developed as a powerful method to study and actively steer ultrafast molecular interactions and energy conversion processes. However the degree of coherent control that can be reached in ensembles is restricted, due to the intrinsic inhomogeneity of the synchronized subset. Clearly the only way to overcome spatio-temporal disorder and achieve key control is by addressing individual units: coherent control of single molecules. Here we report the observation and manipulation of vibrational wave-packet interference in individual molecules at ambient conditions. We show that adapting the time and phase distribution of the optical excitation field to the dynamics of each molecule results in a superior degree of control compared to the ensemble approach. Phase reversal does invert the molecular response, confirming the control of quantum coherence. Time-phase maps show a rich diversity in excited state dynamics between different, yet chemically identical, molecules. The presented approach is promising for single-unit coherent control in multichromophoric systems. Especially the role of coherence in the energy transfer of single antenna complexes under physiological conditions is subject of great attention. Now the role of energy disorder and variation in coupling strength can be explored, beyond the inhomogeneously broadened ensemble. © 2011 The Royal Society of Chemistry.
Bibliografía:Moerner, W.E., Kador, L., (1989) Phys. Rev. Lett., 62, p. 2535
Orrit, M., Bernard, J., (1990) Phys. Rev. Lett., 65, p. 2716
Basché, T., Moerner, W.E., Orrit, M., Wild, U.P., (1996) Single-Molecule Optical Detection, Imaging and Spectroscopy, , (VCH)
Moerner, W.E., (2002) J. Phys. Chem. B, 106, p. 910
Kulzer, F., Orrit, M., (2004) Annu. Rev. Phys. Chem., 55, p. 585
Veerman, J.A., García-Parajó, M.F., Kuipers, L., Van Hulst, N.F., (1999) Phys. Rev. Lett., 83, p. 2155
Kuno, M., Fromm, D.P., Hamann, H.F., Gallagher, A., Nesbitt, D.J., (2001) J. Chem. Phys., 115, p. 1028
Lounis, B., Orrit, M., (2005) Rep. Prog. Phys., 68, p. 1129
Taminiau, T.H., Stefani, F.D., Segerink, F.B., Van Hulst, N.F., (2008) Nat. Photonics, 2, p. 234
Hernando, J., Hoogenboom, J.P., Van Dijk, E.M.H.P., García-López, J., Reinhoudt, D.N., Crego-Calama, M., Van Hulst, N.F., García-Parajó, M.F., (2004) Phys. Rev. Lett., 93, p. 236404
Vanden Bout, D.A., Yip, W.T., Hu, D., Fu, D.K., Swager, T.M., Barbara, P.F., (1997) Science, 277, p. 1074
Hofmann, C., Aartsma, T.J., Michel, H., Köhler, J., (2003) Proc. Natl. Acad. Sci. U. S. A., 100, p. 15534
Michalet, X., Weiss, S., Jäger, M., (2006) Chem. Rev., 106, p. 1785
Van Oijen, A.M., Ketelaars, M., Köhler, J., Aartsma, T.J., Schmidt, J., (1999) Science, 285, p. 400
Bopp, M.A., Sytnik, A., Howard, T.D., Cogdell, R.J., Hochstrasser, R.M., (1999) Proc. Natl. Acad. Sci. U. S. A., 96, p. 11271
Van Zanten, T.S., Gómez, J., Manzo, C., Cambi, A., Buceta, J., Reigada, R., Garcia-Parajo, M.F., (2010) Proc. Natl. Acad. Sci. U. S. A., 107, p. 15437
Van Zanten, T.S., Gómez, J., Manzo, C., Cambi, A., Buceta, J., Reigada, R., Garcia-Parajo, M.F., (2009) Proc. Natl. Acad. Sci. U. S. A., 106, p. 18557
Elf, J., Li, G., Xie, X.S., (2007) Science, 316, p. 1191
Gaiduk, A., Yorulmaz, M., Ruijgrok, P.V., Orrit, M., (2010) Science, 330, p. 353
Chong, S., Min, W., Xie, X.S., (2010) J. Phys. Chem. Lett., 1, p. 3316
Kukura, P., Celebrano, M., Renn, A., Sandoghdar, V., (2010) J. Phys. Chem. Lett., 1, p. 3323
Celebrano, M., Kukura, P., Renn, A., Sandoghdar, V., (2011) Nat. Photonics, 5, p. 95
Wei, M., Lu, S., Chong, S., Roy, R., Holtom, G.R., Xie, X.S., (2009) Nature, 461, p. 1105
Van Dijk, E.M.H.P., Hernando, J., García-López, J., Crego-Calama, M., Reinhoudt, D.N., Kuipers, L., García-Parajó, M.F., Van Hulst, N.F., (2005) Phys. Rev. Lett., 94, p. 078302
Van Dijk, E.M.H.P., Hernando, J., García-Parajó, M.F., Van Hulst, N.F., (2005) J. Chem. Phys., 123, p. 064703
Hernando, J., Van Dijk, E.M.H.P., Hoogenboom, J.P., García-López, J., Reinhoudt, D.N., Crego-Calama, M., García-Parajó, M.F., Van Hulst, N.F., (2006) Phys. Rev. Lett., 97, p. 216403
Lee, H., Cheng, Y.C., Fleming, G.R., (2007) Science, 316, p. 1462
Engel, G.S., Calhoun, T.R., Read, E.L., Ahn, T.K., Mancal, T., Cheng, Y.C., Blankenship, R.E., Fleming, G.R., (2007) Nature, 446, p. 782
Scholes, G.D., (2010) J. Phys. Chem. Lett., 1, p. 2
Collini, E., Wong, C.Y., Wilk, K.E., Curmi, P.M.G., Brumer, P., Scholes, G.D., (2010) Nature, 463, p. 644
Panitchayangkoon, G., Hayes, D., Fransted, K.A., Caram, J.R., Harel, E., Wen, J., Blankenship, R.E., Engel, G.S., (2010) Proc. Natl. Acad. Sci. U. S. A., 107, p. 12766
Sarovar, M., Ishizaki, A., Fleming, G.R., Whaley, K.B., (2010) Nat. Phys., 6, p. 462
Caruso, F., Chin, A.W., Datta, A., Huelga, S.F., Plenio, M.B., (2009) J. Chem. Phys., 131, p. 105106
Abramavicius, D., Mukamel, S., (2010) J. Chem. Phys., 133, p. 064510
Mukamel, S., (2010) J. Chem. Phys., 132, p. 241105
Brinks, D., Stefani, F.D., Kulzer, F., Hildner, R., Taminiau, T.H., Avlasevich, Y., Müllen, K., Van Hulst, N.F., (2010) Nature, 465, p. 905
Hildner, R., Brinks, D., Stefani, F.D., Van Hulst, N.F., (2011) Phys. Chem. Chem. Phys., 13, p. 1888
Geerts, Y., Quante, H., Platz, H., Mahrt, R., Hopmeier, M., Bohm, A., Müllen, K., (1998) J. Mater. Chem., 8, p. 2357
Avlasevich, Y., Müller, S., Erk, P., Müllen, K., (2007) Chem.-Eur. J., 13, p. 6555
http://www.idestaqe.com/; Lozovoy, V.V., Pastirk, I., Dantus, M., (2004) Opt. Lett., 29, p. 775
Martínez, O.E., (1987) IEEE J. Quantum Electron., 23, p. 1385
Brinks, D., Stefani, F.D., Van Hulst, N.F., (2009) Ultrafast Phenomena XVI, p. 890. , ed. Corkum, S. de Silvestri, K. A. Nelson, E. Riedle and R. W. Schoenlein, Springer, Berlin
Prokhorenko, V.I., Nagy, A.M., Waschuk, S.A., Brown, L.S., Birge, R.R., Miller, R.J.D., Coherent Control of Retinal Isomerization in Bacteriorhodopsin (2006) Science, 313, p. 1257
Hildner, R., Brinks, D., Van Hulst, N.F., (2011) Nat. Phys., 7, p. 172
ISSN:13596640
DOI:10.1039/c1fd00087j