Coherent control of single molecules at room temperature
The detection of individual molecules allows to unwrap the inhomogeneously broadened ensemble and reveal the spatial disorder and temporal dynamics of single entities. During 20 years of increasing sophistication this approach has provided valuable insights into biomolecular interactions, cellular p...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | , , |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
2011
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| Sumario: | The detection of individual molecules allows to unwrap the inhomogeneously broadened ensemble and reveal the spatial disorder and temporal dynamics of single entities. During 20 years of increasing sophistication this approach has provided valuable insights into biomolecular interactions, cellular processes, polymer dynamics, etc. Unfortunately the detection of fluorescence, i.e. incoherent spontaneous emission, has essentially kept the time resolution of the single molecule approach out of the range of ultrafast coherent processes. In parallel coherent control of quantum interferences has developed as a powerful method to study and actively steer ultrafast molecular interactions and energy conversion processes. However the degree of coherent control that can be reached in ensembles is restricted, due to the intrinsic inhomogeneity of the synchronized subset. Clearly the only way to overcome spatio-temporal disorder and achieve key control is by addressing individual units: coherent control of single molecules. Here we report the observation and manipulation of vibrational wave-packet interference in individual molecules at ambient conditions. We show that adapting the time and phase distribution of the optical excitation field to the dynamics of each molecule results in a superior degree of control compared to the ensemble approach. Phase reversal does invert the molecular response, confirming the control of quantum coherence. Time-phase maps show a rich diversity in excited state dynamics between different, yet chemically identical, molecules. The presented approach is promising for single-unit coherent control in multichromophoric systems. Especially the role of coherence in the energy transfer of single antenna complexes under physiological conditions is subject of great attention. Now the role of energy disorder and variation in coupling strength can be explored, beyond the inhomogeneously broadened ensemble. © 2011 The Royal Society of Chemistry. |
|---|---|
| Bibliografía: | Moerner, W.E., Kador, L., (1989) Phys. Rev. Lett., 62, p. 2535 Orrit, M., Bernard, J., (1990) Phys. Rev. Lett., 65, p. 2716 Basché, T., Moerner, W.E., Orrit, M., Wild, U.P., (1996) Single-Molecule Optical Detection, Imaging and Spectroscopy, , (VCH) Moerner, W.E., (2002) J. Phys. Chem. B, 106, p. 910 Kulzer, F., Orrit, M., (2004) Annu. Rev. Phys. Chem., 55, p. 585 Veerman, J.A., García-Parajó, M.F., Kuipers, L., Van Hulst, N.F., (1999) Phys. Rev. Lett., 83, p. 2155 Kuno, M., Fromm, D.P., Hamann, H.F., Gallagher, A., Nesbitt, D.J., (2001) J. Chem. Phys., 115, p. 1028 Lounis, B., Orrit, M., (2005) Rep. Prog. Phys., 68, p. 1129 Taminiau, T.H., Stefani, F.D., Segerink, F.B., Van Hulst, N.F., (2008) Nat. Photonics, 2, p. 234 Hernando, J., Hoogenboom, J.P., Van Dijk, E.M.H.P., García-López, J., Reinhoudt, D.N., Crego-Calama, M., Van Hulst, N.F., García-Parajó, M.F., (2004) Phys. Rev. Lett., 93, p. 236404 Vanden Bout, D.A., Yip, W.T., Hu, D., Fu, D.K., Swager, T.M., Barbara, P.F., (1997) Science, 277, p. 1074 Hofmann, C., Aartsma, T.J., Michel, H., Köhler, J., (2003) Proc. Natl. Acad. Sci. U. S. A., 100, p. 15534 Michalet, X., Weiss, S., Jäger, M., (2006) Chem. Rev., 106, p. 1785 Van Oijen, A.M., Ketelaars, M., Köhler, J., Aartsma, T.J., Schmidt, J., (1999) Science, 285, p. 400 Bopp, M.A., Sytnik, A., Howard, T.D., Cogdell, R.J., Hochstrasser, R.M., (1999) Proc. Natl. Acad. Sci. U. S. A., 96, p. 11271 Van Zanten, T.S., Gómez, J., Manzo, C., Cambi, A., Buceta, J., Reigada, R., Garcia-Parajo, M.F., (2010) Proc. Natl. Acad. Sci. U. S. A., 107, p. 15437 Van Zanten, T.S., Gómez, J., Manzo, C., Cambi, A., Buceta, J., Reigada, R., Garcia-Parajo, M.F., (2009) Proc. Natl. Acad. Sci. U. S. A., 106, p. 18557 Elf, J., Li, G., Xie, X.S., (2007) Science, 316, p. 1191 Gaiduk, A., Yorulmaz, M., Ruijgrok, P.V., Orrit, M., (2010) Science, 330, p. 353 Chong, S., Min, W., Xie, X.S., (2010) J. Phys. Chem. Lett., 1, p. 3316 Kukura, P., Celebrano, M., Renn, A., Sandoghdar, V., (2010) J. Phys. Chem. Lett., 1, p. 3323 Celebrano, M., Kukura, P., Renn, A., Sandoghdar, V., (2011) Nat. Photonics, 5, p. 95 Wei, M., Lu, S., Chong, S., Roy, R., Holtom, G.R., Xie, X.S., (2009) Nature, 461, p. 1105 Van Dijk, E.M.H.P., Hernando, J., García-López, J., Crego-Calama, M., Reinhoudt, D.N., Kuipers, L., García-Parajó, M.F., Van Hulst, N.F., (2005) Phys. Rev. Lett., 94, p. 078302 Van Dijk, E.M.H.P., Hernando, J., García-Parajó, M.F., Van Hulst, N.F., (2005) J. Chem. Phys., 123, p. 064703 Hernando, J., Van Dijk, E.M.H.P., Hoogenboom, J.P., García-López, J., Reinhoudt, D.N., Crego-Calama, M., García-Parajó, M.F., Van Hulst, N.F., (2006) Phys. Rev. Lett., 97, p. 216403 Lee, H., Cheng, Y.C., Fleming, G.R., (2007) Science, 316, p. 1462 Engel, G.S., Calhoun, T.R., Read, E.L., Ahn, T.K., Mancal, T., Cheng, Y.C., Blankenship, R.E., Fleming, G.R., (2007) Nature, 446, p. 782 Scholes, G.D., (2010) J. Phys. Chem. Lett., 1, p. 2 Collini, E., Wong, C.Y., Wilk, K.E., Curmi, P.M.G., Brumer, P., Scholes, G.D., (2010) Nature, 463, p. 644 Panitchayangkoon, G., Hayes, D., Fransted, K.A., Caram, J.R., Harel, E., Wen, J., Blankenship, R.E., Engel, G.S., (2010) Proc. Natl. Acad. Sci. U. S. A., 107, p. 12766 Sarovar, M., Ishizaki, A., Fleming, G.R., Whaley, K.B., (2010) Nat. Phys., 6, p. 462 Caruso, F., Chin, A.W., Datta, A., Huelga, S.F., Plenio, M.B., (2009) J. Chem. Phys., 131, p. 105106 Abramavicius, D., Mukamel, S., (2010) J. Chem. Phys., 133, p. 064510 Mukamel, S., (2010) J. Chem. Phys., 132, p. 241105 Brinks, D., Stefani, F.D., Kulzer, F., Hildner, R., Taminiau, T.H., Avlasevich, Y., Müllen, K., Van Hulst, N.F., (2010) Nature, 465, p. 905 Hildner, R., Brinks, D., Stefani, F.D., Van Hulst, N.F., (2011) Phys. Chem. Chem. Phys., 13, p. 1888 Geerts, Y., Quante, H., Platz, H., Mahrt, R., Hopmeier, M., Bohm, A., Müllen, K., (1998) J. Mater. Chem., 8, p. 2357 Avlasevich, Y., Müller, S., Erk, P., Müllen, K., (2007) Chem.-Eur. J., 13, p. 6555 http://www.idestaqe.com/; Lozovoy, V.V., Pastirk, I., Dantus, M., (2004) Opt. Lett., 29, p. 775 Martínez, O.E., (1987) IEEE J. Quantum Electron., 23, p. 1385 Brinks, D., Stefani, F.D., Van Hulst, N.F., (2009) Ultrafast Phenomena XVI, p. 890. , ed. Corkum, S. de Silvestri, K. A. Nelson, E. Riedle and R. W. Schoenlein, Springer, Berlin Prokhorenko, V.I., Nagy, A.M., Waschuk, S.A., Brown, L.S., Birge, R.R., Miller, R.J.D., Coherent Control of Retinal Isomerization in Bacteriorhodopsin (2006) Science, 313, p. 1257 Hildner, R., Brinks, D., Van Hulst, N.F., (2011) Nat. Phys., 7, p. 172 |
| ISSN: | 13596640 |
| DOI: | 10.1039/c1fd00087j |