Proximity force approximation for the Casimir energy as a derivative expansion

The proximity force approximation (PFA) has been widely used as a tool to evaluate the Casimir force between smooth objects at small distances. In spite of being intuitively easy to grasp, it is generally believed to be an uncontrolled approximation. Indeed, its validity has only been tested in part...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Fosco, César Daniel
Otros Autores: Lombardo, Fernando César, Mazzitelli, F.D
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2011
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:The proximity force approximation (PFA) has been widely used as a tool to evaluate the Casimir force between smooth objects at small distances. In spite of being intuitively easy to grasp, it is generally believed to be an uncontrolled approximation. Indeed, its validity has only been tested in particular examples, by confronting its predictions with the next-to-leading-order (NTLO) correction extracted from numerical or analytical solutions obtained without using the PFA. In this article we show that the PFA and its NTLO correction may be derived within a single framework, as the first two terms in a derivative expansion. To that effect, we consider the Casimir energy for a vacuum scalar field with Dirichlet conditions on a smooth curved surface described by a function ψ in front of a plane. By regarding the Casimir energy as a functional of ψ, we show that the PFA is the leading term in a derivative expansion of this functional. We also obtain the general form of the corresponding NTLO correction, which involves two derivatives of ψ. We show, by evaluating this correction term for particular geometries, that it properly reproduces the known corrections to PFA obtained from exact evaluations of the energy. © 2011 American Physical Society.
Bibliografía:Milonni, P.W., (1994) The Quantum Vacuum, , Academic Press, San Diego
Bordag, M., Mohideen, U., Mostepanenko, V.M., (2001) Phys. Rep., 353, p. 1. , PRPLCM 0370-1573 10.1016/S0370-1573(01)00015-1
Milton, K.A., (2001) The Casimir Effect: Physical Manifestations of the Zero-Point Energy, , World Scientific, Singapore
Reynaud, S., (2001) C. R. Acad. Sci. Paris Ser. IV, 2, p. 1287. , CRSPEA 1251-8050
Milton, K.A., The Casimir effect: Recent controversies and progress (2004) Journal of Physics A: Mathematical and General, 37 (38), pp. R209-R277. , DOI 10.1088/0305-4470/37/38/R01, PII S0305447004819723
Lamoreaux, S.K., (2005) Rep. Prog. Phys., 68, p. 201. , RPPHAG 0034-4885 10.1088/0034-4885/68/1/R04
Bordag, M., Klimchitskaya, G.L., Mohideen, U., Mostepanenko, V.M., (2009) Advances in the Casimir Effect, , Oxford University Press, Oxford
Derjaguin, B.V., Abrikosova, I.I., (1957) Sov. Phys. JETP, 3, p. 819. , SPHJAR 0038-5646
Derjaguin, B.V., (1960) Sci. Am., 203, p. 47. , SCAMAC 0036-8733 10.1038/scientificamerican0760-47
Goldstone, J., Wilczek, F., (1981) Phys. Rev. Lett., 47, p. 986. , See for example:, PRLTAO 0031-9007 10.1103/PhysRevLett.47.986
Aitchison, I.J.R., Fraser, C.M., (1984) Ann. Phys. (N.Y.), 156, p. 1. , APNYA6 0003-4916 10.1016/0003-4916(84)90209-4
Aitchison, I.J.R., Fraser, C.M., (1985) Phys. Rev. D, 31, p. 2605. , PRVDAQ 0556-2821 10.1103/PhysRevD.31.2605
Emig, T., Hanke, A., Golestanian, R., Kardar, M., (2003) Phys. Rev. A, 67, p. 022114. , PLRAAN 1050-2947 10.1103/PhysRevA.67.022114
Emig, T., J. Stat. Mech., 2008, p. 04007. , 1742-5468 (10.1088/1742-5468/2008/04/P04007
Maia Neto, P.A., Lambrecht, A., Reynaud, S., (2008) Phys. Rev. A, 78, p. 012115. , PLRAAN 1050-2947 10.1103/PhysRevA.78.012115
Bulgac, A., Magierski, P., Wirzba, A., (2006) Phys. Rev. D, 73, p. 025007. , PRVDAQ 1550-7998 10.1103/PhysRevD.73.025007
Wirzba, A., Bulgac, A., Magierski, P., Casimir interaction between normal or superfluid grains in the Fermi sea (2006) Journal of Physics A: Mathematical and General, 39 (21), pp. 6815-6822. , DOI 10.1088/0305-4470/39/21/S84, PII S0305447006119198
Bordag, M., Nikolaev, V., (2008) J. Phys. A, 41, p. 164002. , 1751-8113 10.1088/1751-8113/41/16/164002
Bordag, M., Nikolaev, V., (2010) Phys. Rev. D, 81, p. 065011. , PRVDAQ 1550-7998 10.1103/PhysRevD.81.065011
Gies, H., Langfeld, K., Moyaerts, L., J. High Energy Phys., 2003 (6), p. 018. , JHEPFG 1029-8479 10.1088/1126-6708/2003/06/018
Dalvit, D.A.R., Lombardo, F.C., Mazzitelli, F.D., Onofrio, R., Casimir force between eccentric cylinders (2004) Europhysics Letters, 67 (4), pp. 517-523. , DOI 10.1209/epl/i2004-10099-3
Emig, T., Jaffe, R.L., Kardar, M., Scardicchio, A., (2006) Phys. Rev. Lett., 96, p. 080403. , PRLTAO 0031-9007 10.1103/PhysRevLett.96.080403
Lombardo, F.C., Mazzitelli, F.D., Villar, P.I., (2008) Phys. Rev. D, 78, p. 085009. , PRVDAQ 1550-7998 10.1103/PhysRevD.78.085009
Bordag, M., Casimir effect for a sphere and a cylinder in front of a plane and corrections to the proximity force theorem (2006) Physical Review D - Particles, Fields, Gravitation and Cosmology, 73 (12), p. 125018. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevD.73.125018&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevD.73.125018
Gies, H., Klingmuller, K., Casimir effect for curved geometries: Proximity-force-approximation validity limits (2006) Physical Review Letters, 96 (22), p. 220401. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevLett.96.220401&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevLett.96.220401
Rahi, S.J., Rodriguez, A.W., Emig, T., Jaffe, R.L., Johnson, S.G., Kardar, M., Nonmonotonic effects of parallel sidewalls on Casimir forces between cylinders (2008) Physical Review A - Atomic, Molecular, and Optical Physics, 77 (3), p. 030101. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevA.77.030101&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevA.77.030101
Rahi, S.J., Emig, T., Jaffe, R.L., Kardar, M., (2008) Phys. Rev. A, 78, p. 012104. , PLRAAN 1050-2947 10.1103/PhysRevA.78.012104
Decca, R.S., Fischbach, E., Klimchitskaya, G.L., Krause, D.E., Lopez, D., Mostepanenko, V.M., (2009) Phys. Rev. D, 79, p. 124021. , PRVDAQ 1550-7998 10.1103/PhysRevD.79.124021
Dalvit, D.A.R., Onofrio, R., (2009) Phys. Rev. D, 80, p. 064025. , PRVDAQ 1550-7998 10.1103/PhysRevD.80.064025
Mazzitelli, F.D., Lombardo, F.C., Villar, P.I., (2009) J. Phys. Conf. Ser., 161, p. 012015. , 1742-6588 10.1088/1742-6596/161/1/012015
Blocki, J., Randrup, J., Swiatecki, W.J., Tsang, C.F., (1977) Ann. Phys. (N.Y.), 105, p. 427. , APNYA6 0003-4916 10.1016/0003-4916(77)90249-4
ISSN:15507998
DOI:10.1103/PhysRevD.84.105031