How porphyrinogenic drugs modeling acute porphyria impair the hormonal status that regulates glucose metabolism. Their relevance in the onset of this disease

This work deals with the study of how porphyrinogenic drugs modeling acute porphyrias interfere with the status of carbohydrate-regulating hormones in relation to key glucose enzymes and to porphyria, considering that glucose modulates the development of the disease. Female Wistar rats were treated...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Matkovic, L.B
Otros Autores: D'Andrea, F., Fornes, D., San Martín de Viale, L.C, Mazzetti, M.B
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2011
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:This work deals with the study of how porphyrinogenic drugs modeling acute porphyrias interfere with the status of carbohydrate-regulating hormones in relation to key glucose enzymes and to porphyria, considering that glucose modulates the development of the disease. Female Wistar rats were treated with 2-allyl-2-isopropylacetamide (AIA) and 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) using different doses of AIA (100, 250 and 500 mg/kg body weight) and a single dose of DDC (50 mg DDC/kg body weight). Rats were sacrificed 16 h after AIA/DDC administration. In the group treated with the highest dose of AIA (group H), hepatic 5-aminolevulinic acid synthase (ALA-S) increased more than 300%, phosphoenolpyruvate carboxykinase (PEPCK) and glycogen phosphorylase (GP) activities were 43% and 46% lower than the controls, respectively, plasmatic insulin levels exceeded normal values by 617%, and plasmatic glucocorticoids (GC) decreased 20%. GC results are related to a decrease in corticosterone (CORT) adrenal production (33%) and a significant reduction in its metabolization by UDP-glucuronosyltransferase (UGT) (62%). Adrenocorticotropic hormone (ACTH) stimulated adrenal production 3-fold and drugs did not alter this process. Thus, porphyria-inducing drugs AIA and DDC dramatically altered the status of hormones that regulate carbohydrate metabolism increasing insulin levels and reducing GC production, metabolization and plasmatic levels. In this acute porphyria model, gluconeogenic and glycogenolytic blockages caused by PEPCK and GP depressed activities, respectively, would be mainly a consequence of the negative regulatory action of insulin on these enzymes. GC could also contribute to PEPCK blockage both because they were depressed by the treatment and because they are positive effectors on PEPCK. These disturbances in carbohydrates and their regulation, through ALA-S de-repression, would enhance the porphyria state promoted by the drugs on heme synthesis and destruction. This might be the mechanism underlying the "glucose effect" observed in hepatic porphyrias. The statistical correlation study performed showed association between all the variables studied and reinforce these conclusions. © 2011 Elsevier Ireland Ltd.
Bibliografía:Altuna, M.E., Lelli, S.M., San Martín de Viale, L.C., Damasco, M.C., Effect of stress on hepatic 11beta-hydroxysteroid dehydrogenase activity and its influence on carbohydrate metabolism (2006) Can. J. Physiol. Pharmacol., 84, pp. 977-984
Ayes, B.N., Assay of inorganic phosphate, total phosphate and phosphatases (1966) Methods in Enzymology: Carbohydrate Metabolism, Part E, 8. , Academic Press, New York, 115-118
(1998) Statistical Software for Biologists. Version 3.2c, , Applied Biostatistics Inc., 3 Heritage Lane, Setauket, New York 11733, USA
Bonkovsky, H.L., Porphyrin and heme metabolism and the porphyrias (1990) Hepatology: A Textbook of Liver Disease, pp. 378-424. , Saunders, Philadelphia, D. Zakim, T. Boyer (Eds.)
Burchell, B., Coughtrie, M.W., UDP-glucuronosyltransferases (1989) Pharmacol. Ther., 43, pp. 261-289
De Matteis, F., Rapid loss of cytochrome P-450 and haem caused in the liver microsomes by the porphyrinogenic agent 2-allyl-2-isopropilacetamide (1970) FEBS Lett., 6, pp. 343-345
De Matteis, F., Abbritti, G., Gibbs, A.H., Decreased liver activity of porphyrin-metal chelatase in hepatic porphyria caused by 3,5-diethoxycarbonyl-1,4-dihydrocollidine. Studies in rats and mice (1973) Biochem. J., 134, pp. 717-727
Doss, M., Sixel-Dietrich, F., Verspohlm, F., "Glucose effect" and rate limiting function of uroporphyrinogen synthase on porphyrin metabolism in hepatocyte culture: relationship with human acute hepatic porphyrias (1985) J. Clin. Chem. Clin. Biochem., 23, pp. 505-513
Duckworth, W.C., Bennett, R.G., Hamel, F.G., Insulin degradation: progress and potential (1998) Endocr. Rev., 19, pp. 608-624
Faut, M., (2007), Catabolismo de los hidratos de carbono y estrés oxidativo en un modelo de porfiria aguda en ratas. Thesis. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires, Argentina; Goldman, D., Yawetz, A., The interference of polychlorinated biphenyls (Aroclor 1254) with membrane regulation of the activities of cytochromes P-450C21 and P-450(17) alpha lyase in guinea-pig adrenal microsomes (1992) J. Steroid. Biochem. Mol. Biol., 42, pp. 37-47
Gomez-Sanchez, C.E., Murry, B.A., Kem, D.C., Kaplan, N.M., A direct radioimmunoassay of corticosterone in rat serum (1975) Endocrinology, 96, pp. 796-798
Gotelli, G.R., Wall, J.H., Kabra, P.M., Marton, L.J., Fluorometric liquid-chromatographic determination of serum cortisol (1981) Clin. Chem., 27, pp. 331-443
Hanson, R.W., Reshef, L., Regulation of phosphoenolpyruvate carboxykinase (GTP) gene expression (1997) Annu. Rev. Biochem., 66, pp. 581-611
Hodgins, M.B., Steyer, M., Staib, W., Effects of the porphyrogenic agent 2-allyl-2-isopropylacetamide on the hydroxylation of testosterone in rat liver microsomal fraction (1973) Biochem. Soc. Trans., 1, pp. 942-944
Johnson, L.N., Glycogen phosphorylase: control by phosphorylation and allosteric effectors (1992) FASEB J., 6, pp. 2274-2282
Kappas, A., Sassa, S., Galbraith, R.A., Nordmann, Y., The porphyrias (1995) Metabolic and Molecular Basis of Inherited Disease, pp. 2103-2159. , McGraw-Hill, New York, C.R. Scriver, A.L. Beaudet, W.S. Sly, D. Valle, J.B. Stanbury, J.B. Wibgaarden, D.S. Fredickson (Eds.)
Lelli, S.M., Ceballos, N.R., Mazzetti, M.B., Aldonatti, C.A., San Martín de Viale, L., Hexachlorobenzene as hormonal disruptor studies about glucocorticoids: their hepatic receptors, adrenal synthesis and plasma levels in relation to impaired gluconeogenesis (2007) Biochem. Pharmacol., 73, pp. 873-879
Lelli, S.M., San Martin de Viale, L.C., Mazzetti, M.B., Response of glucose metabolism enzymes in an acute porphyria model. Role of reactive oxygen species (2005) Toxicology, 216, pp. 49-58
Litman, D.A., Correia, M.A., L-Tryptophan: a common denominator of biochemical and neurological events of acute hepatic porphyria? (1983) Science, 222, pp. 1031-1033
Lowry, H.O., Rosebrough, R.J., Farr, A.L., Randall, R.J., Protein measurement with the Folin phenol reagent (1951) J. Biol. Chem., 193, pp. 265-275
Mackenzie, P.I., Mojarrabi, B., Meech, R., Hansen, A., Steroid UDP-glucuronosyltransferases: characterization and regulation (1996) J. Endocrinol., 150 (SUPPL. S), pp. 79-86
Marks, G.S., McCluskey, S.A., Mackie, J.E., Riddick, D.S., James, C.A., Disruption of hepatic heme biosynthesis after interaction of xenobiotics with cytochrome P-450 (1988) FASEB J., 2, pp. 2774-2783
Marver, H.S., Tscudy, D.P., Perlroth, M.J., Collins, A., Delta-aminolevulinic acid synthetase. I. Studies in liver homogenates (1966) J. Biol. Chem., 241, pp. 2803-2809
Matkovic', L., Gomez-Sanchez, C.E., Cozza, E.N., Inhibition of aldosterone production in rat adrenal mitochondria by 18-ethynyl-11-deoxycorticosterone: a simple model for kinetic interpretation of mechanism-based inhibitors (2001) J. Biochem. (Tokyo), 129, pp. 383-390
Mauzerall, D., Granick, S., The occurrence and determination of 5-aminolevulinic acid and porphobilinogen in urine (1956) J. Biol. Chem., 219, pp. 435-446
Mazzetti, M.B., Taira, M.C., Lelli, S.M., Dascal, E., Basabe, J.C., de Viale, L.C., Hexachlorobenzene impairs glucose metabolism in a rat model of porphyria cutanea tarda: a mechanistic approach (2004) Arch. Toxicol., 78, pp. 25-33
Melloul, D., Marshak, S., Cerasi, E., Regulation of insulin gene transcription (2002) Diabetologia, 45, pp. 309-326
Monteiro, H.P., Abdalla, D.S.P., Augusto, O., Bechara, E.J.H., Free radical generation during delta-aminolevulinic acid autoxidation: induction by hemoglobin and connections with porphyrinpathies (1989) Arch. Biochem. Biophys., 271, pp. 206-216
Newman, J.D., Armstrong, J.M., On the activities of glycogen phosphorylase and glycogen synthase in the liver of the rat (1978) Biochim. Biophys. Acta, 544, pp. 225-233
Ortiz de Montellano, P.R., Beilan, H.S., Kunze, K.L., N-Alkylprotoporphyrin IX formation in 3,5-dicarbethoxy-1,4-dihydrocollidine-treated rats. Transfer of the alkyl group from the substrate to the porphyrin (1981) J. Biol. Chem., 256, pp. 6708-6713
Owens, I.S., Ritter, J.K., Gene structure at the human UGT1 locus creates diversity in isozyme structure, substrate specificity, and regulation (1995) Prog. Nucleic Acids Res., 51, pp. 306-338
Petrescu, I., Bojan, O., Saied, M., Barzu, O., Schmidt, F., Kuhnle, H.F., Determination of phosphoenolpyruvate carboxykinase activity with deoxyguanosine 5'-diphosphate as nucleotide substrate (1979) Anal. Biochem., 96, pp. 279-281
Provencher, P.H., Tremblay, Y., Bélanger, B., Bélanger, A., Studies of adrenal steroidogenic enzymes in guinea pigs (1992) Am. J. Physiol., 262, pp. 869-874
Seabright, P.J., Smith, G.D., The characterization of endosomal insulin degradation intermediates and their sequence of production (1996) Biochem. J., 320, pp. 947-956
Smith, A.G., De Matteis, F., Drugs and the hepatic porphyrias (1980) Clin. Haematol., 9, pp. 399-425
Sutherland, C., O'Brien, R.M., Granner, D.K., Phosphatidylinositol 3-kinase, but not p70/p85 ribosomal S6 protein kinase, is required for the regulation of phosphoenolpyruvate carboxykinase (PEPCK) gene expression by insulin. Dissociation of signaling pathways for insulin and phorbol ester regulation of PEPCK gene expression (1995) J. Biol. Chem., 270, pp. 15501-15506
Taira, M.C., Mazzetti, M.B., Lelli, S.M., San Martín de Viale, L.C., Glycogen metabolism and glucose transport in experimental porphyria (2004) Toxicology, 197, pp. 165-175
Tephly, T.R., Burchell, B., UDP-glucuronosyltransferases: a family of detoxifying enzymes (1990) Trends. Pharmacol. Sci., 11, pp. 276-279
Tschudy, D.P., Welland, F.H., Collins, A., Hunter, G., The effect of carbohydrate feeding on the induction of delta-aminolevulinic acid synthetase (1964) Metabolism, 13, pp. 396-406
Turgeon, D., Carrier, J.S., Lévesque, E., Hum, D.W., Bélanger, A., Relative enzymatic activity, protein stability, and tissue distribution of human steroid-metabolizing UGT2B subfamily members (2001) Endocrinology, 142, pp. 778-787
Wada, O., Toyokawa, K., Urata, G., Yano, Y., Nakao, K., Cholesterol biosynthesis in the liver of experimentally induced porphyric mice (1969) Biochem. Pharmacol., 18, pp. 1533-1535
Yokota, H., Iwano, H., Endo, M., Kobayashi, T., Inoue, H., Ikuroshiro, S., Yuasa, A., Glucuronidation of the environmental oestrogen bisphenol A by an isoform of UDP-glucuronosyltransferase, UGT2B1, in the rat liver (1999) Biochem. J., 340, pp. 405-409
ISSN:0300483X
DOI:10.1016/j.tox.2011.08.014