|
|
|
|
| LEADER |
02819cam a22007097a 4500 |
| 001 |
BIBLO-46659 |
| 003 |
AR-BaUEN |
| 005 |
20201111150536.0 |
| 008 |
130524s2002 xxk||||f |||| 00| 0|eng|d |
| 040 |
|
|
|a AR-BaUEN
|b spa
|c AR-BaUEN
|
| 020 |
|
|
|a 9783764367145
|
| 044 |
|
|
|a xxk
|
| 080 |
|
|
|a 512.81
|b B877
|
| 100 |
1 |
|
|a Brown, Ken A.
|
| 245 |
1 |
0 |
|a Lectures on algebraic quantum groups
|
| 250 |
|
|
|a 1st. ed.
|
| 260 |
|
|
|a Basel :
|b Birlhäuser,
|c 2002
|
| 300 |
|
|
|a ix, 348 p.
|
| 490 |
0 |
|
|a Advanced Courses in Mathematics CRM Barcelona
|
| 505 |
0 |
0 |
|t Preface
|
| 505 |
0 |
0 |
|g I.1.
|t Beginnings and first examples
|
| 505 |
0 |
0 |
|g I.2.
|t Further quantized coordinate rings
|
| 505 |
0 |
0 |
|g I.3.
|t The quantized enveloping algebra of sl₂(k)
|
| 505 |
0 |
0 |
|g I.4.
|t The finite dimensional representations of Uq(sl₂(k))
|
| 505 |
0 |
0 |
|g I.5.
|t Primer on semisimple Lie algebras
|
| 505 |
0 |
0 |
|g I.6.
|t Structure and representation theory of Uq(g)with q generic
|
| 505 |
0 |
0 |
|g I.7.
|t Generic quantized coordinate rings of semisimple groups
|
| 505 |
0 |
0 |
|g I.8.
|t Oq(G) is a noetherian domain
|
| 505 |
0 |
0 |
|g I.9.
|t Bialgebras and Hopf algebras
|
| 505 |
0 |
0 |
|g I.10.
|t R-matrices
|
| 505 |
0 |
0 |
|g I.11.
|t The Diamond Lemma
|
| 505 |
0 |
0 |
|g I.12.
|t Filtered and graded rings
|
| 505 |
0 |
0 |
|g I.13.
|t Polynomial identity algebras
|
| 505 |
0 |
0 |
|g I.14.
|t Skew polynomial rings satisfying a polynomial identity
|
| 505 |
0 |
0 |
|g I.15.
|t Homological conditions
|
| 505 |
0 |
0 |
|g I.16.
|t Links and blocks
|
| 505 |
0 |
0 |
|g II.1.
|t The prime spectrum
|
| 505 |
0 |
0 |
|g II.2.
|t Stratification
|
| 505 |
0 |
0 |
|g II.3.
|t Proof of the Stratification Theorem
|
| 505 |
0 |
0 |
|g II.4.
|t Prime ideals in Oq(G)
|
| 505 |
0 |
0 |
|g II.5.
|t H-primes in iterated skew polynomial algebras
|
| 505 |
0 |
0 |
|g II.6.
|t More on iterated skew polynomial algebras
|
| 505 |
0 |
0 |
|g II.7.
|t The primitive spectrum
|
| 505 |
0 |
0 |
|g II.8.
|t The Dixmier-Moeglin equivalence
|
| 505 |
0 |
0 |
|g II.9.
|t Catenarity
|
| 505 |
0 |
0 |
|g II.10.
|t Problems and conjectures
|
| 505 |
0 |
0 |
|g III.1.
|t Finite dimensional modules for affine PI algebras
|
| 505 |
0 |
0 |
|g III.2.
|t The finite dimensional representations of Uε(sl₂(k))
|
| 505 |
0 |
0 |
|g III.3.
|t The finite dimensional representations of Oε(sl₂(k))
|
| 505 |
0 |
0 |
|g III.4.
|t Basic properties of PI Hopf triples
|
| 505 |
0 |
0 |
|g III.5.
|t Poisson structures
|
| 505 |
0 |
0 |
|g III.6.
|t Structure of Uε(g)
|
| 505 |
0 |
0 |
|g III.7.
|t Structure of representation of Oε(G)
|
| 505 |
0 |
0 |
|g III.8.
|t Homological properties and the Azumaya locus
|
| 505 |
0 |
0 |
|g III.9.
|t Müller's Theorem and blocks
|
| 505 |
0 |
0 |
|g III.10.
|t Problems and perspectives
|
| 505 |
0 |
0 |
|t Bibliography
|
| 505 |
0 |
0 |
|t Index
|
| 653 |
1 |
0 |
|a GRUPOS CUANTICOS
|
| 700 |
1 |
|
|a Goodearl, Ken R.
|
| 962 |
|
|
|a info:eu-repo/semantics/book
|a info:ar-repo/semantics/libro
|b info:eu-repo/semantics/publishedVersion
|
| 999 |
|
|
|c 36503
|