Reinforcement learning : an introduction /

Guardado en:
Detalles Bibliográficos
Autor principal: Sutton, Richard S.
Otros Autores: Barto, Andrew G.
Formato: Libro
Lenguaje:Inglés
Publicado: Cambridge, MA : MIT Press, c2018
Edición:2nd ed.
Colección:Adaptive computation and machine learning series
Materias:
Aporte de:Registro referencial: Solicitar el recurso aquí
Tabla de Contenidos:
  • I
  • Introduction 1.
  • Tabular solution methods I
  • Multi-armed bandits 2.
  • Finite Markov decision processes 3.
  • Dynamic programming 4.
  • Monte Carlo methods 5.
  • Temporal-difference learning 6.
  • n-step bootstrapping 7.
  • Planning and learning with tabular methods 8.
  • Approximate solution methods II
  • On-policy prediction with approximation 9
  • On-policy control with approximation 10.
  • *Off-policy methods with approximation 11.
  • Eligibility traces 12.
  • Policy gradient methods 13.
  • Looking deeper III
  • Psychology 14.
  • Neuroscience 15.
  • Applications and case studies 16.
  • Frontiers 17.