Data-driven Modeling for Diabetes Diagnosis and Treatment /
This contributed volume presents computational models of diabetes that quantify the dynamic interrelationships among key physiological variables implicated in the underlying physiology under a variety of metabolic and behavioral conditions. These variables comprise for example blood glucose concentr...
Guardado en:
Otros Autores: | , |
---|---|
Formato: | Libro electrónico |
Lenguaje: | Inglés |
Publicado: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2014.
|
Colección: | Lecture Notes in Bioengineering,
|
Materias: | |
Acceso en línea: | http://dx.doi.org/10.1007/978-3-642-54464-4 |
Aporte de: | Registro referencial: Solicitar el recurso aquí |
Tabla de Contenidos:
- Hypoglycemia Prevention using Low Glucose Suspend Systems
- Linear Modeling and Prediction in Diabetes Physiology
- Adaptive Algorithms for Personalized Diabetes Treatment
- Data-driven modeling of Diabetes Progression
- Nonlinear Modeling of the Dynamic Effects of Free Fatty Acids on Insulin Sensitivity
- Data-driven and Mininal-type Compartmental Insulin-Glucose Models: Theory and Applications
- Pitfalls in model identification: examples from Glucose-Insulin modelling
- Ensemble Glucose Prediction in Insulin-Dependent Diabetes
- Simple parameters describing gut absorption and lipid dynamics in relation to glucose metabolism during a routine oral glucose test
- Simulation Models for In-Silico Evaluation of Closed-Loop Insulin Delivery Systems in Type 1 Diabetes.