Local drivers of the structure of a tropical bird ‑ seed dispersal network
One of the major challenges in ecology is to understand the relative importance of neutral- and niche-based processes structuring species interactions within communities. The concept of neutral-based processes posits that network structure is a result of interactions between species based on their a...
Guardado en:
| Otros Autores: | , , , |
|---|---|
| Formato: | Artículo |
| Lenguaje: | Inglés |
| Materias: | |
| Acceso en línea: | http://ri.agro.uba.ar/files/intranet/articulo/2019machadodesouza.pdf LINK AL EDITOR |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| Sumario: | One of the major challenges in ecology is to understand the relative importance of neutral- and niche-based processes structuring species interactions within communities. The concept of neutral-based processes posits that network structure is a result of interactions between species based on their abundance. On the other hand, niche-based processes presume that network structure is shaped by constraints to interactions. Here, we evaluated the relative importance of neutral-based process, represented by species’ abundance (A) and fruit production (F) models, and niche-based process, represented by spatial overlap (S), temporal overlap (T) and morphological barrier (M) models, in shaping the structure of a bird-seed dispersal network from the Brazilian Atlantic Forest. We evaluated the ability of each model, singly or in combination, to predict the general structure [represented by connectance, nestedness (NODF), weight nestedness (WNODF), interaction evenness and complementary specialization] and microstructure of the network (i.e., the frequency of pairwise interactions). Only nestedness (both NODF and WNODF) was predicted by at least one model. NODF and WNODF were predicted by a neutral-based process (A), by a combination of niche-based processes (ST and STM) and by both neutral- and niche-based processes (AM). NODF was also predicted by F and FM model. Regarding microstructure, temporal overlap (T) was the most parsimonious model able to predict it. Our findings reveal that a combination of neutral- and niche-based processes is a good predictor of the general structure (NODF and WNODF) of the bird-seed dispersal network and a niche-based process is the best predictor of the network’s microstructure. |
|---|---|
| ISSN: | 0029-8549 (impreso) 1432-1939 (en línea) |