An introduction to seismology, earthquakes and earth structure /

Guardado en:
Detalles Bibliográficos
Autor principal: Stein, Seth
Otros Autores: Wysession, Michael
Formato: Desconocido
Lenguaje:Español
Publicado: Malden : Blackwell, 2011.
Edición:11th ed.
Materias:
Aporte de:Registro referencial: Solicitar el recurso aquí
Tabla de Contenidos:
  • 1. Introduction. 1.1.1. Overview
  • 1.1.2. Models in seismology
  • 1.2. Seismology and society
  • 1.2.1. Seismic hazards and risks
  • 1.2.2. Engineering seismology and earthquake engineering
  • 1.2.3. Highways, bridges, dams and pipelines
  • 1.2.4. Tsunamis, ladslides and soil liquefaction
  • 1.2.5. Earthquake forecasting
  • 1.2.6. Earghquake prediction
  • 1.2.7. Real-time warnings
  • 1.2.8. Nuclear monitoring and treaty verification
  • 2. Basic Seismological Theory. 2.1. Introduction
  • 2.2. Waves on a string
  • 2.2.1. Theory
  • 2.2.2. Harmonic wave solution
  • 2.2.3. Reflection and transmission
  • 2.2.4. Energy in a harmonic wave
  • 2.2.5. Normal modes of a sring
  • 2.3. Stress and strain
  • 2.3.1. Introduction
  • 2.3.2. Sress
  • 2.3.3. Stress as a tensor
  • 2.3.4. Principal stressses
  • 2.3.5. Maximum shear stress and faulting
  • 2.3.6. Deviatoric stresses
  • 2.3.7. Equation of motion
  • 2.3.8. Strain
  • 2.3.9. constitutive equations
  • 2.3.10. Boundary conditions
  • 2.3.11. Strain energy
  • 2.4. Seismic wavees
  • 2.4.1. The seismic wave equation
  • 2.4.2. Plane waves
  • 2.4.3. spherical waves
  • 2.4.4. P and S waves
  • 2.4.5. Energy in a plane wave
  • 2.5. Snell's law
  • 2.5.1. The layered medium approximation
  • 2.5.2. Plane wave potentials for a layered medum
  • 2.5.3. Angle of incidence and apparent velocity
  • 2.5.4. Snell's law
  • 2.5.5. critical angle
  • 2.5.6. Snell's law for SH slowness
  • 2.5.8. Waveguides
  • 2.5.9. Fermat's principle and geometric ray theory
  • 2.5.10. Huygens'principle and diffraction
  • 2.6. Plane wave reflection and transmission coefficients
  • 2.6.1. Introducion
  • 2.6.2. SH wave reflection and transmission coefficients
  • 2.6.3. Energy flux for reflected and transmitted SH waves
  • 2.6.4. Postcritical SH waves
  • 2.6.5. P-SV waves at a free surface
  • 2.6.6. Solid-solid and solid-liquid interfaces
  • 2.7. Surface waves
  • 2.7.1. Introduction
  • 2.7.2. Raryleigh waves in a homogeneous halfspace
  • 2.7.3. Love waves in a layer over a halfspace
  • 2.7.4. Love wave dispersion
  • 2.8. Dispersion
  • 2.8.1. Phase and group velocity
  • 2.8.2. Disprsive signals
  • 2.8.3. Surface wave dispersion studies
  • 2.8.4. Tsunami dispersion
  • 2.9. Normal modes of the earth
  • 2.9.. Motivation
  • 2.9.2. Modes of a sphere
  • 2.9.3. Spherical harmonics
  • 2.9.4. Torsional modes
  • 2.9.5. Spheroidal modes
  • 2.9.6. Modes and propagating waves
  • 2.9.7. Observing normal modes
  • 2.9.8. Normal mode synthetic seismograms
  • 2.9.9.
  • Mode atternation, splitting and coupling
  • 3. Seismology and Earth Structure. 3.1. Introduction
  • 3.2. Refraction seismology
  • 3.2.1. Flat layer method
  • 3.2.2. Dipping layer method
  • 3.2.3. Advanced analysis methods
  • 3.2.4. Crustal structure
  • 3.2.5. Rocks and minerals
  • 3.3. Reflecion seismology .. 3.3.1. Travel time curves for reflections
  • 3.3.2. Intercept-slowness forulation for travel times
  • 3.3.3. Multichannel data geometry
  • 3.3.4. Common midpoint stacking
  • 3.3.5. Signal embancement
  • 3.3.6. Deconvolution
  • 3.3.7. Migration
  • 3.3.8. Data processing sequence
  • 3.4. Seismic waves in a spherical earht
  • 3.4.1. Ray paths and travel times
  • 3.4.2.Velocity distributions
  • 3.4.3. Travel time curve inversion
  • 3.5. Body wave travel time studies
  • 3.5.1. Body wave phases
  • 3.5.2. Core phases - 3.5.3. Upper mantle structure
  • 3.5.4. Lower mantle structure
  • 3.5.5. Visualizing body waves
  • 3.6. Anisotropic earth structure
  • 3.6.1. General considerations
  • 3.6.2. Transverse isotropy and azimuthal amisotropy
  • 3.6.3. Anisotropy of minerals and rocks
  • 3.6.4. Anisotropy of composite structures
  • 3.6.5. Anisotropy in the lithosphere and the athenosphere
  • 3.6.6. Anisotropy in the mantle and the core
  • 3.7. Attenuation and anelasticity
  • 3.7.1. Wave atternuation
  • 3.7.2. Geometric spreading
  • 3.7.3. Multipathing
  • 3.7.4. Scattering
  • 3.7.5. Instrinsic atternuation
  • 3.7.6. Quality factor, Q
  • 3.7.7. Spectral resonance peaks
  • 3.7.8. Physical dispersion due to amelasticity
  • 3.7.9. Physical models for anelasticity
  • 3.7.10. Q from rust to inner core
  • 3.8. Composition of the mantle and the core
  • 3.8.1. Density within the earth
  • 3.8.2. Temperature in the earth
  • 3.8.3. Composition of the mantle
  • 3.8.4. Composition of D''
  • - 3.8.5. Composition of the core
  • 3.8.6.Seismology and plantera evolution
  • 4. Earthquakes. 4.. Introduction
  • 4.2. Focal mechanisms
  • 4.2.1. Fault geometry
  • 4.2.2. First motions
  • 4.2.3. Body wave radiation patterns
  • 4.2.4. Stereographic fault plane representation
  • 4.2.5. Analytical representation of fault geometry
  • 4.3. Waveform modeling
  • 4.3.1. Basic model
  • 4.3.2. Source time function
  • 4.3.3. Body wave modeling
  • 4.3.4. Surface wave focal mechanism
  • 4.3.5. Once and future earghqakes
  • 4.4. Moment tensors
  • 4.4.1. Equivalent forces
  • 4.4.2. Single forces
  • 4.4.3. Force couples
  • 4.4.4. Double couples
  • 4.4.5. Earthquake moment tensors
  • 4.4.6. Isotropic and CLVD moment tensors
  • 4.4.7. Moment tensor inversion
  • 4.4.8. Interpretation of moment tensors
  • 4.5. Earthquake geodesy
  • 4.5.1. Measuring ground deformation
  • 4.5.2. coseismic deformation
  • 4.5.3. Joitn geodetic and seismological earthquake studies
  • 4.5.4. Interseismic deformation and the seismic cycle
  • 4.6. Source parameters
  • 4.6.1. Magnitudes and moment
  • 4.6.2. Source spectra and scaling laws
  • 4.6.3. Stress drop and earthquake energy
  • 4.7. Earthquake statistics. 4.7.1. Frequency-magnitude relations
  • 4.7.2. Aftershocks
  • 4.7.3. Earthquake probabilities
  • 5. Seismology and Plate Tectonics. 5.1. Introduction
  • 5.2. Plate kinematics
  • 5.2.1. Relative plate motions
  • 5.2.2. Global plate motions
  • 5.2.3. Space-based geodesy
  • 5.2.4. Absolute plate motions
  • 5.3. Spreading centers
  • 5.3.1. Geometry of ridges and transforms
  • 5.3.2. Evolutions of the oceanic lithosphere
  • 5.3.3. Ridge and transform earthquakes and processes
  • 5.4. Subduction zones
  • 5.4.1. Thermal models of sbduction
  • 5.4.2. Earthquakes in subducting slabs
  • 5.4.3. Interplate trench earthquakes
  • 5.5. Oceanic intraplae earthquakes and tectonics
  • 5.5.1. Locations of oceanic intraplate seismicity
  • 5.5.2. Fources and stresses in the oceanic lithosphere
  • 5.5.3. Constraints on mantle viscosity
  • 5.6. Continental eartquakes and tectonics
  • 5.6.1. Continental plate boundary zones
  • 5.6.2. Seismic, aseismic, transient and permanent deformation
  • 5.6.3. Continental intraplate earthquake
  • 5.7. Faulting and deformation in the earth. 5.7.1.Rheology
  • 5.7.2. Rock fracture and friction
  • 5.7.3. Ductile flow
  • 5.7.4. Strength of the lithosphere
  • 5.7.5. Earthquakes and rock friction
  • 5.7.6. Earthqakes and regional deformaion
  • 6. Seismograms as Signals. 6.1. Introduction
  • 6.2. Fourier analysis
  • 6.2.1. Fourier series
  • 6.2.2. Complex Fourier series
  • 6.2.3. Fourier transforms
  • 6.2.4. Properties of Fourier transforms
  • 6.2.5. Delta functions
  • 6.3. Linear systems
  • 6.3.1. Basic model
  • 6.3.2. Convolution and deconvolution modeling
  • 6.3.3. Finite length signals
  • 6.3.4. Correlation
  • 6.4. Discrete time series and transforms
  • 6.4.1. Sampling of continuous data
  • 6.4.2. The discrete Fourier transforms
  • 6.4.3. Properties of DFTs
  • 6.4.4. The fast Fourier transform
  • 6.4.5. Digital convolution
  • 6.5. Stacking
  • 6.5.1. Random errors
  • 6.5.2.
  • 6.6. Seismometers and seismological networks
  • 6.6.1. Introduction
  • 6.6.2. The dampted harmonic oscillator
  • 6.6.3. Earth noise
  • 6.6.4. seismometers and seismographs
  • 6.6.5. Digital recording
  • 6.6.6. Types of networks
  • 6.6.7. Global networks
  • 6.6.8. Arrays
  • 6.6.9. Regiona networks
  • 7. Inverse Problems. Inverse problems
  • 7.1. Introduction
  • 7.2. Earthquake location
  • 7.2.1. Theory
  • 7.2.2. Eartquake location for a homogeneous medium
  • 7.2.3. Errors
  • 7.2.4. Earthquake location for more complex geometries
  • 7.3. Travel time tomography
  • 7.3.1. Theory
  • 7.3.2. Generalized inverse
  • 7.3.3. Properties of the generalized inverse solution
  • 7.3.4. Variants of the solution
  • 7.4. Stratified earth structure
  • 7.4.1. Earth structure from normal modes
  • 7.4.2. Parameter and data space inversions
  • 7.4.3. Features of the solutions
  • 7.5. Inverting for plate morions
  • 7.5.1. Method
  • 7.5.2. Testing the results with X2 and F-ratio tests
  • Appendix: mathematical and computational background. A.1. Introduction
  • A.2. Complex numbers
  • A.3. Scalar products
  • A.3.. Vector products
  • A. 3.5. Index notation
  • A.3.6. Vector spaces
  • A.4. Mattrix algebra. A.4.1. definitions
  • A.4.2. Determinant
  • A.4.3. Inverse
  • A.4.04. Systems of linear equations
  • A.4.5. Systems of linear equations
  • A. 4.5. Solving systems of equations on a computer
  • A.5. Vector transformations. A.5.1. Cordinate transformations
  • A.5.2. Eigenwalues and eigenvectors
  • A.5.3. Symmetric matrix eigenvalues, eigenvectors, diagonalization and decomposition
  • A.6. Vector calclus. A.6.1. Scalar and vector fields
  • A.6.2. Gradient
  • A.6.3. Divergence
  • A.6.4. Curl
  • A.6.5. Laplacian
  • A.7. Spherical coordinates
  • A.7.1. The spherical coordinate system
  • A.7.2. Distance and azimuth
  • A.7.3. Choice of axes
  • A.7.4. Vector operators in spherical coordinates
  • A.8. Scientific programming. A.8.1. Example: synthetic seismogram calculation
  • A.8.2. Programming style
  • A.8.3. Representation of numbers
  • A.8.4. A few pitfalls
  • A.8.5. Some philosophical points.