The geology of stratigraphic sequences /

Guardado en:
Detalles Bibliográficos
Autor principal: Miall, Andrew D.
Formato: Desconocido
Lenguaje:Español
Publicado: New York : Springer, 2010.
Edición:2nd ed.
Materias:
Aporte de:Registro referencial: Solicitar el recurso aquí
Tabla de Contenidos:
  • Part 1. The Emergence of Modern Concepts. 1. Historical and Methodological Background
  • 1.1. Introduction
  • 1.2. Methods in Geology
  • 1.2.1. The Significance of Sequence Stratigraphy
  • 1.2.2. Data and Argument in Geology
  • 1.2.3. The Hermeneutic Circle and the Emergence of Sequence Stratigraphy
  • 1.2.4. Paradigms and Exemplars
  • 1.3. The Development of Descriptive Stratigraphy
  • 1.3.1. The Growth of Modern Concepts
  • 1.3.2. Do Stratigraphic Units Have “Time” Significance?
  • 1.3.3. The Development of Modern Chronostratigraphy
  • 1.4. The Continual Search for a “Pulse of the Earth”
  • 1.5. Problems and Research Trends: The Current Status
  • 1.6. Current Literature
  • 1.7. Stratigraphic Terminology
  • 2. The Basic Sequence Model. 2.1. Introduction
  • 2.2. Elements of the Model
  • 2.2.1. Accommodation and Supply
  • 2.2.2. Stratigraphic Architecture
  • 2.2.3. Depositional Systems and Systems Tracts
  • 2.3. Sequence Models in Clastic and Carbonate Settings
  • 2.3.1. Marine Clastic Depositional Systems and Systems Tracts
  • 2.3.2. Nonmarine Depositional Systems
  • 2.3.3. Carbonate Depositional Systems
  • 2.4. Sequence Definitions
  • 3. Other Methods for the Stratigraphic Analysis of Cycles of Base-Level Change. 3.1. Introduction
  • 3.2. Facies Cycles
  • 3.3. Areas and Volumes of Stratigraphic Units
  • 3.4. Hypsometric Curves
  • x Contents
  • 3.5. Backstripping
  • 3.6. Sea-Level Estimation from Paleoshorelines and Other Fixed Points
  • 3.7. Documentation of Metre-Scale Cycles
  • 3.8. Integrated Tectonic-Stratigraphic Analysis
  • Part 2. The Stratigraphic Framework. 4. The Major Types of Stratigraphic Cycle. 4.1. Introduction
  • 4.2. Sequence Hierarchy
  • 4.3. The Supercontinent Cycle
  • 4.4. Cycles with Episodicities of Tens of Millions of Years
  • 4.5. Cycles with Million-Year Episodicities
  • 4.6. Cycles with Episodicities of Less Than One Million Years
  • 5. Cycles with Episodicities of Tens to Hundreds of Millions of Years. 5.1. Climate, Sedimentation and Biogenesis
  • 5.2. The Supercontinent Cycle
  • 5.2.1. The Tectonic-Stratigraphic Model
  • 5.2.2. The Phanerozoic Record
  • 5.3. Cycles with Episodicities of Tens of Millions of years
  • 5.3.1. Regional to Intercontinental Correlations
  • 5.3.2. Tectonostratigraphic Sequences
  • 5.4. Main Conclusions
  • 6. Cycles with Million-Year Episodicities. 6.1. Continental Margins
  • 6.1.1. Clastic Platforms and Margins
  • 6.1.2. Carbonate Cycles of Platforms and Craton Margins
  • 6.1.3. Mixed Carbonate-Clastic Successions
  • 6.2. Foreland Basins
  • 6.2.1. Foreland Basin of the North American Western Interior
  • 6.2.2. Other Foreland Basins
  • 6.3. Arc-Related Basins
  • 6.3.1. Forearc Basins
  • 6.3.2. Backarc Basins
  • 6.4. Cyclothems and Mesothems
  • 6.5. Conclusions
  • 7. Cycles with Episodicities of Less than One Million Years. 7.1. Introduction
  • 7.2. Neogene Clastic Cycles of Continental Margins
  • 7.2.1. The Gulf Coast Basin of the United States
  • 7.2.2. Wanganui Basin, North Island, New Zealand
  • 7.2.3. Other Examples of Neogene High-Frequency Cycles
  • 7.2.4. The Deep-Marine Record
  • 7.3. Pre-neogene Marine Carbonate and Clastic Cycles
  • 7.4. Late Paleozoic Cyclothems
  • 7.5. Lacustrine Clastic and Chemical Rhythms
  • 7.6. High-Frequency Cycles in Foreland Basins
  • 7.7. Main Conclusions
  • Part 3. Mechanisms. 8. Summary of Sequence-Generating Mechanisms. 9. Long-Term Eustasy and Epeirogeny. 9.1. Mantle Processes and Dynamic Topography
  • 9.2. Supercontinent Cycles
  • 9.3. Cycles with Episodicities of Tens of Millions of Years
  • 9.3.1. Eustasy
  • 9.3.2. Dynamic Topography and Epeirogeny
  • 9.3.3. The Origin of Sloss Sequences
  • 9.4. Main Conclusions
  • 10. Tectonic Mechanisms. 10.1. Introduction
  • 10.2. Rifting and Thermal Evolution of Divergent Plate Margins
  • 10.2.1. Basic Geophysical Models and Their Implications for Sea-Level Change
  • 10.2.2. The Origins of Some Tectonostratigraphic Sequences
  • 10.3. Tectonism on Convergent Plate Margins and in Collision Zones
  • 10.3.1. Magmatic Arcs and Subduction
  • 10.3.2. Rates of Uplift and Subsidence on Convergent Margins
  • 10.3.3. Tectonism Versus Eustasy in Foreland Basins
  • 10.4. Intraplate Stress
  • 10.4.1. The Pattern of Global Stress
  • 10.4.2. In-Plane Stress as a Control of Sequence Architecture
  • 10.4.3. In-Plane Stress and Regional Histories of Sea-Level Change
  • 10.5. Basement Control
  • 10.6. Sediment Supply and the Importance of Big Rivers
  • 10.7. Environmental Change
  • 10.8. Main Conclusions
  • 11. Orbital Forcing. 11.1. Introduction
  • 11.2. The Nature of Milankovitch Processes
  • 11.2.1. Components of Orbital Forcing
  • 11.2.2. Basic Climatology
  • 11.2.3. Variations with Time in Orbital Periodicities
  • 11.2.4. Isostasy and Geoid Changes
  • 11.2.5. Nonglacial Milankovitch Cyclicity
  • 11.2.6. The Nature of the Cyclostratigraphic Data Base
  • 11.3. The Geologic Record
  • 11.3.1. The Sensitivity of the Earth to Glaciation
  • 11.3.2. The Cenozoic Record
  • 11.3.3. Glacioeustasy in the Mesozoic?
  • 11.3.4. Late Paleozoic Cyclothem
  • 11.4. Distinguishing Between Orbital Forcing and Tectonic Driving Mechanisms
  • 11.5. Main Conclusions
  • Part 4. Chronostratigraphy and Correlation: An Assessment of the Current Status of “Global Eustasy”. 12. The Concept of the Global Cycle Chart. 12.1. From Vail to Haq
  • 12.2. The Two-Paradigm Problem
  • 12.2.1. The Global-Eustasy Paradigm
  • 12.2.2. The Complexity Paradigm
  • 12.3. Defining and Deconstructing Global Eustasy and Complexity Texts
  • 12.4. Invisible Colleges and the Advancement of Knowledge
  • 12.5. The Global-Eustasy Paradigm — A Revolution in Trouble?
  • 13. Time in Sequence Stratigraphy. 13.1. Introduction
  • 13.2. Hierarchies of Time and the Completeness of the Stratigraphic Record
  • 13.3. Main Conclusions
  • 14. Chronostratigraphy, Correlation, and Modern Tests for Global Eustasy. 14.1. Introduction
  • 14.2. Chronostratigraphic Models and the Testing of Correlations
  • 14.3. Chronostratigraphic Meaning of Unconformities
  • 14.4. A Correlation Experiment
  • 14.5. Testing for Eustasy: The Way Forward
  • 14.5.1 Introduction
  • 14.5.2. The Dating and Correlation of Stratigraphic Events: Potential Sources of Uncertainty
  • 14.5.3. The Value of Quantitative Biostratigraphic Methods
  • 14.5.4. Assessment of Relative Biostratigraphic Precision
  • 14.5.5. Correlation of Biozones with the Global Stage Framework
  • 14.5.6. Assignment of Absolute Ages and the Importance of the Modern Time Scale
  • 14.6. Modern Tests of the Global-Eustasy Paradigm
  • 14.6.1. Cretaceous-Paleogene Sequence Stratigraphy of New Jersey
  • 14.6.2. Other Modern High-Resolution Studies of Cretaceous-Paleogene Sequence Stratigraphy
  • 14.6.3. Sequence Stratigraphy of the Neogene
  • 14.6.4. The Growing Evidence for Glacioeustasy in the Mesozoic and Early Cenozoic
  • 14.7. Cyclostratigraphy and Astrochronology
  • 14.7.1. Historical Background of Cyclostratigraphy
  • 14.7.2. The Building of a Time Scale
  • 14.8. Testing Correlations with Carbon Isotope Chemostratigraphy
  • 14.9. Main Conclusions
  • 15. Future Directions. 15.1. Research Methods
  • 15.2. Remaining Questions
  • 15.2.1. Future Advances in Cyclostratigraphy?
  • 15.2.2. Tectonic Mechanisms of Sequence Generation
  • 15.2.3. Orbital Forcing
  • 15.2.4. The Codification of Sequence Nomenclature.