Open source gis a GRASS GIS approach /
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | |
| Formato: | Desconocido |
| Lenguaje: | Español |
| Publicado: |
Berlin :
Springer,
2010
|
| Edición: | 3rd ed. |
| Materias: | |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
Tabla de Contenidos:
- 1. Open Source software and GIS
- 1.1. Open Source concept
- 1.2. GRASS as an Open Source GIS
- 1.3. The North Carolina sample data set
- 1.4. How to read this book
- 2. GIS concepts
- 2.1. General GIS principles
- 2.1.1. Geospatial data models
- 2.1.2. Organization of GIS data and system functionality
- 2.2. Map projections and coordinate systems
- 2.2.1. Map projection principles
- 2.2.2. Common coordinate systems and datums
- 3. Getting started with GRASS
- 3.1. First steps
- 3.1.1. Download and install GRASS
- 3.1.2. Database and command structure
- 3.1.3. Graphical User Interfaces for GRASS 6: QGIS and gis.m
- 3.1.4. Starting GRASS with the North Carolina data set
- 3.1.5. GRASS data display and 3D visualization
- 3.1.6. Project data management
- 3.2. Starting GRASS with a new project
- 3.2.1. Defining the coordinate system for a new project - 3.2.2. Non-georeferenced xy coordinate system
- 3.3. Coordinate system transformations
- 3.3.1. Coordinate lists
- 3.3.2. Projection of raster and vector maps
- 3.3.3. Reprojecting with GDAL/OGR tools
- 4. GRASS data models and data exchange
- 4.1. Raster data
- 4.1.1. GRASS 2D and 3D raster data models
- 4.1.2. Managing regions, raster map resolution and boundaries
- 4.1.3. Import of georeferenced raster data
- 4.1.4. Import and geocoding of a scanned historical map
- 4.1.5. Raster data export
- 4.2. Vector data
- 4.2.1. GRASS vector data model
- 4.2.2. Import of vector data - 4.2.3. Coordinate transformation for xy CAD drawings
- 4.2.4. Export of vector data
- 5. Working with raster data
- 5.1. Viewing and managing raster maps
- 5.1.1. Displaying raster data and assigning a color table
- 5.1.2. Managing metadata of raster maps
- 5.1.3. Raster map queries and profiles
- 5.1.4. Raster map statistics
- 5.1.5. Zooming and generating subsets from raster maps
- 5.1.6. Generating simple raster maps
- 5.1.7. Reclassification and rescaling of raster maps
- 5.1.8. Recoding of raster map types and value replacements
- 5.1.9. Assigning category labels
- 5.1.10. Masking and handling of no-data values
- 5.2. Raster map algebra
- 5.2.1. Integer and floating point data
- 5.2.2. Basic calculations
- 5.2.3. Working with “if” conditions
- 5.2.4. Handling of NULL values in r.mapcalc
- 5.2.5. Creating a MASK with r.mapcalc
- 5.2.6. Special graph operators
- 5.2.7. Neighborhood operations with relative coordinates
- 5.3. Raster data transformation and interpolation
- 5.3.1. Automated vectorization of discrete raster data
- 5.3.2. Generating isolines representing continuous fields
- 5.3.3. Resampling and interpolation of raster data
- 5.3.4. Overlaying and merging raster maps
- 5.4. Spatial analysis with raster data
- 5.4.1. Neighborhood analysis and cross-category statistics
- 5.4.2. Buffering of raster features
- 5.4.3. Cost surfaces
- 5.4.4. Terrain and watershed analysis
- 5.4.5. Landscape structure analysis
- 5.5 Landscape process modeling
- 5.5.1. Hydrologic and groundwater modeling
- 5.5.2. Erosion and deposition modeling
- 5.5.3. Final note on raster-based modeling and analysis
- 5.6. Working with voxel data
- 6. Working with vector data
- 6.1. Map viewing and metadata management
- 6.1.1. Displaying vector maps
- 6.1.2. Vector map metadata maintenance
- 6.2. Vector map attribute management and SQL support
- 6.2.1. SQL support in GRASS 6
- 6.2.2. Sample SQL queries and attribute modifications
- 6.2.3. Map reclassification
- 6.2.4. Vector map with multiple attribute tables: layers
- 6.3. Digitizing vector data
- 6.3.1. General principles for digitizing topological data.
- 6.3.2. Interactive digitizing in GRASS
- 6.4. Vector map queries and statistics
- 6.4.1. Map queries
- 6.4.2. Raster map statistics based on vector objects
- 6.4.3. Point vector map statistics
- 6.5. Geometry operations
- 6.5.1. Topological operations
- 6.5.2. Buffering
- 6.5.3. Feature extraction and boundary dissolving
- 6.5.4. Patching vector maps
- 6.5.5. Intersecting and clipping vector maps
- 6.5.6 Transforming vector geometry and creating 3D vectors
- 6.5.7. Convex hull and triangulation from points
- 6.5.8. Find multiple points in same location
- 6.5.9. Length of common polygon boundaries
- 6.6. Vector network analysis
- 6.6.1. Network analysis
- 6.6.2. Linear reference system (LRS)
- 6.7. Vector data transformations to raster
- 6.8. Spatial interpolation and approximation
- 6.8.1. Selecting an interpolation method
- 6.8.2. Interpolation and approximation with RST
- 6.8.3. Tuning the RST parameters: tension and smoothing
- 6.8.4. Estimating RST accuracy
- 6.8.5. Segmented processing
- 6.8.6. Topographic analysis with RST
- 6.9. Working with lidar point cloud data
- 6.10 Volume based interpolation
- 6.10.1. Adding third variable: precipitation with elevation
- 6.10.2. Volume and volume-temporal interpolation
- 6.10.3. Geostatistics and splines
- 7. Graphical output and visualization
- 7.1. Two-dimensional display and animation
- 7.1.1. Advanced map display in the GRASS monitor
- 7.1.2. Creating a 2D shaded elevation map
- 7.1.3. Using display tools for analysis
- 7.1.4. Monitor output to PNG or PostScript files
- 7.2. Creating hardcopy maps with ps.map
- 7.3. Visualization in 3D space with NVIZ
- 7.3.1. Viewing surfaces, raster and vector maps
- 7.3.2. Querying data and analyzing multiple surfaces
- 7.3.3. Creating animations in 3D space
- 7.3.4. Visualizing volumes
- 7.4. Coupling with an external OpenGL viewer Paraview
- 8. Image processing
- 8.1. Remote sensing basics
- 8.1.1. Spectrum and remote sensing
- 8.1.2. Import of image channels
- 8.1.3. Managing channels and colors
- 8.1.4. The feature space and image groups
- 8.2. Data preprocessing
- 8.2.1. Radiometric preprocessing
- 8.2.2. Deriving a surface temperature map from thermal channel
- 8.3. Radiometric transformations and image enhancements
- 8.3.1 Image ratios
- 8.3.2. Principal Component Transformation
- 8.4. Geometric feature analysis with matrix filters
- 8.5. Image fusion
- 8.5.1. Introduction to RGB and IHS color model
- 8.5.2. Image fusion with the IHS transformation
- 8.5.3. Image fusion with Brovey transform
- 8.6. Thematic classification of satellite data
- 8.6.1. Unsupervised radiometric classification
- 8.6.2. Supervised radiometric classification
- 8.6.3. Supervised SMAP classification
- 8.7. Multitemporal analysis
- 8.8. Segmentation and pattern recognition
- 9. Notes on GRASS programming
- 9.1. GRASS programming environment
- 9.1.1. GRASS source code
- 9.1.2. Methods of GRASS programming
- 9.1.3. Level of integration
- 9.2. Script programming
- 9.3. Automated usage of GRASS
- 9.3.1. Local mode: GRASS as GIS data processor
- 9.3.2. Web based: PyWPS – Python Web Processing Service
- 9.4. Notes on programming GRASS modules in C
- 10. Using GRASS with other Open Source tools
- 10.1. Geostatistics with GRASS and gstat
- 10.2. Spatial data analysis with GRASS and R
- 10.2.1. Reading GRASS data into R
- 10.2.2. Kriging in R
- 10.2.3. Using R in batch mode
- 10.3. GPS data handling
- 10.4. WebGIS applications with UMN/MapServer and OpenLayers
- A. Appendix
- A.1. Selected equations used in GRASS modules-- A.2. Landscape process modeling
- A.3. Definition of SQLite-ODBC connection.