Tabla de Contenidos:
  • Part I Introduction
  • 1. Geomophology and global tectonics: introduction / Michael A. Summerfield
  • 1.1 Aim and context
  • 1.2 Early ideas
  • 1.3 Davisian dogma
  • 1.4 Erosion surfaces, denudation chronology and tectonics
  • 1.5 Current issues
  • 1.6 Plan of the book
  • Part II General models and empirical approaches
  • 2. Application of digital elevation models to macroscale tectonic geomorphology / Larry Mayer
  • 2.1 Introduction
  • 2.2 Digital elevation models
  • 2.3 Topographic analysis and DEMs
  • 2.4 Use of DEMs for tectonic studies
  • 2.5 DEMs for macroscales tectonic geomorphology
  • 2.5.1 Grand Canyon erosion
  • 2.5.2 Volcanic eruptions: Mount St Helens
  • 2.5.3 Interplate seismicity: New Madrid, Missouri, USA
  • 2.5.4 Continental rifting: Baja California
  • 2.6 Future Research directions
  • Apendix: Some sources of global elevation data
  • 3. Coupled tectonic-surface process modes with applications to rifted margins and collisional orogens / Christopher Beaumont ; Henk kooi and Sean Willett
  • 3.1 Introduction
  • 3.1.1 Convergent plate boundaries
  • 3.1.2 Divergent plate boundaries
  • 3.1.3 Stating the problem
  • 3.2 Surface process models and coupling tectonic models
  • 3.3 Denudational response to kinematic tectonic forcing
  • 3.3.2.1 Steady-state landscape
  • 3.3.2.2 Linear resposnse and landscape response time
  • 3.3.2.3 Slow, intermediate, rapid and impulsive tectonic forcing
  • 3.3.2.4 Nonlinear behavoir
  • 3.3.3 Comparison with other work
  • 3.4 Post-Rift evolution of Rifted Margins
  • 3.4.1 Escarpment evolution
  • 3.4.2 Comparison with other work
  • 3.5 Dynamically coupled models of tectonic and denudation in orogens
  • 3.5.1 Evidence of coupling between tectonics and surface processes
  • 3.5.2. Results from numerical models
  • 3.5.3. Results from physical models
  • 3.6. Future research directions
  • 4. Fission-track thermochronology and the long-term denudational respose to tectonics / Andrew J. W. Gleadow and Roderick W. Brown
  • 4.1. Introduction
  • 4.2. Fission-Track thermochronology
  • 4.2.1. Fission-track dating
  • 4.2.2. Fission-track annealing and thermal history modelling
  • 4.3. Interpretation of fission-track data
  • 4.3.1. Cooling history styles
  • 4.3.2. Discriminating cooling from thermal event styles
  • 4.3.3. Vertical fission-track sampling profiles
  • 4.3.4. Tectonic disruption of fission-track patterns
  • 4.4. application to continental denudation
  • 4.4.1. Deriving estimates of denudation
  • 4.4.2. Estimating thermal gradients
  • 4.4.3. Transient thermal events
  • 4.4.4. Denudation in active orogenic belts
  • 4.4.5. The ralationship between denudation and tectonics
  • 4.5. Conclusion
  • 4.6. Outstanding questions and future directions
  • 5. Macroscale process systems of mountain belt erosion / Niels Hovius
  • 5.1. Introduction
  • 5.2. Global sediment flux
  • 5.2.1. Empirical models for sediment yiedd: the role of climate and relief
  • 5.2.2. Tectonic control on sediment yield
  • 5.3. Landsliding
  • 5.3.1. Limits to local relied
  • 5.3.2. Rate and scaling behaviour of landslides
  • 5.3.3. Residence time
  • 5.3.4. causes of slope instability
  • 5.4. Drainage paterns
  • 5.4.1. Fluvial entrainment
  • 5.4.2. Transverse drainage
  • 5.4.3. Response of drainage patterns to thrust-generated folding
  • 5.5. Longitudinal river profiles
  • 5.5.1. Mthematical models
  • 5.5.2. Regional consistencies iin profile form
  • 5.5.3. Processes of bedrock incision
  • 5.5.4. Terrace studies
  • 5.5.5. Long profile development
  • 5.5.6. Glacial erosion
  • 5.6. Topography and orogen dynamics
  • 5.6.1. Topographic development and steady state: a synthesis
  • 5.6.2. Surface control of orogen wedge dynamics
  • 5.7. Scaling the mountain
  • Part III. Morphotectonic evolution in interplate settings. 6. Geodynamic processes in the Southern Alps, New Zealand / J. Mar Tippett and Niels Hovius
  • 6.1. Introduction
  • 6.2. Framework of the South Island collision zone
  • 6.2.1. Tectonic setting of the Southern Alps
  • 6.2.2. Climate
  • 6.2.3. Geomorphology
  • 6.2.4. Lithology and structure
  • 6.2.5. Seismicity
  • 6.2.6. Deep lithospheric structure and thermal regime
  • 6.3. Uplift and erosion of the Southern Alps
  • 6.3.1. Amount and timing of late Cenozoic erosion and rock uplift
  • 6.3.2. Rates of late Cenozoic cooling, erosion and rock uplift
  • 6.3.3 Modern rates of erosion
  • 6.3.4 Modern rates of rock uplift
  • 6.3.5 Modern surface displacement
  • 6.4 Evolution of topographic architecture
  • 6.4.1 Eastern flank
  • 6.4.3 Cross-sectional architecture
  • 6.5 Discussion and outstanding research questions
  • 6.5.1 Topography
  • 6.5.2 Uplft and erosion
  • 6.5.3 Evolution of the Southern Alps
  • 7 Morphotectonic evolution of Taiwan / Jiun-Chuan Lin
  • 7.1 Introduction
  • 7.2 Regional tectonic background
  • 7.3 The nature of the plate collision Zone in Taiwan
  • 7.3.1 Regional tectonics
  • 7.3.2 Seismicity
  • 7.3.3 Uplift and denudation rates
  • 7.3.4 Climatic controls: rtropical storms and episodic formative events
  • 7.4 Tectonic Landforms of Taiwan
  • 7.5 Morphotectonic evolution of Taiwan
  • 7.5.1 Kinematics of arc-continent collision
  • 7.5.2 An uplift-denudation interaction model for the Central Range
  • 7.5.3 Application to the Coastal Range
  • 7.6 Discussion and conclusions
  • 8 Morphotectonics evolution of Japan / Hiroo Ohmori
  • 8.1 Introduction
  • 8.2 Tectonic framwork of Japan
  • 8.3 Seismicity and crustal displacement
  • 8.3.1 Recent and quaternary crustal movements
  • 8.3.2 Inland Quaternary vertical displacements
  • 8.4 Denudation in the quaternary
  • 8.5 Denudation rates in relation from concurrete tectonics and denudation
  • 8.7 Morphological evolution of the Japanese Mountain Ranges
  • 8.8 Discussion and conclusions
  • 9 Large-scale geomorphology of the Andes: interrelationships of tectonics, magmatics and climate / Lorcan Kennan
  • 9.1 Introduction
  • 9.2 Reconstructing Andean Uplift: Methods
  • 9.3 Overview of plate tectonic setting and kinematics
  • 9.4 Uplift of the Northen Andes (11ºN to 4ºS)
  • 9.4.1 Palaeogeographical development
  • 9.4.2 Fission-track data
  • 9.4.3 Palaebotanical evidence
  • 9.4.4 High-altitude palaeosurfaces in Colombia
  • 9.5 Uplift of the Central Andes (4ºS to 46ºS)
  • 9.5.1 Palaeogeographical development
  • 9.5.2 Fission-track and other cooling ages in Peru and Bolivia
  • 9.5.3 Palaeobotanical evidence
  • 9.5.4 High-altitude palaeosurfaces in Peru, Chile and Bolivia
  • 9.5.5 Southern Puna and easter thrust belt of northern Argentina
  • 9.6 Uplift of the Southern Andes (46ºS - 57ºS)
  • 9.7 Discussion
  • 9.8 Conclusions and reserch questions
  • 10 Morphotectonic evolution of the Himalayas and Tibetan Plateau / Eric J. Fielding
  • 10.1 introduction
  • 10.2 Tectonic Models
  • 10.3 Previous geomorphological studies
  • 10.4 Morphological Characteristics
  • 10.5 Landform development
  • 10.6 Summary of morphotectonic history
  • 10.7 Conclusions
  • Part Iv. Morphotectonic evolution in intraplate seetting. 11. Geomorphological evolution of the East Austrlian continental margin / Paul Bishop and Geoff Goldrick
  • 11.1. Introduction
  • 11.2. Character of the East Australian continental margin
  • 11.3. Southeast Australian denudation
  • 11.3.1. Escarpement retreat across a downwarped coastal strip?
  • 11.3.2. Apatite fission-track thermochronology data and margin denudation
  • 11.3.3. Denudation and margin rebound
  • 11.4. Southeast Australian rivers: planform
  • 11.4.1. Cenozoic valley-filling lavas and southeast Australian drainage hstory
  • 11.4.2. Mesozoic drainage
  • 11.5. Southeast Australian rivers: Long profiles
  • 11.5.1. Cenozoin profiles
  • 11.5.2. Modern river long profiles
  • 11.5.2.1. Introduction - 11.5.2.2. Summary of a more general equilibrium river long profile form
  • 11.5.2.3. The long proile characteristics of the Lachlan basin drainge net
  • 11.6. Synthesis and discussion - 11.6.1. Synthesis
  • 11.6.2. East Australia and the modelling of the evolution of high-elevarion passive continental margins
  • 11.7. Future directions and research issues
  • Appendix: Theoretical derivation of a general form of the equilibrium long profile
  • 12. Morphotectonic evolution of the South Atlantc margins of Africa and South America / Roderick W. Brown, Kery Gallagher, Andrew J. W. Gleadow and Michael A. Summerfield. 12.1. Introduction
  • 12.2. Morphology of the margins
  • 12.3. Regional geology and palaeogeography
  • 12.3.1. Pre-break-up Paraná and Karoo basins
  • 12.3.2. Syn- and post-break-up magmatism
  • 12.3.3. Post-break-up sedimentation and magmatism
  • 12.4. Continental break-up and rifting in the South Atlantic
  • 12.4.1. Break-up and rifting chronology
  • 12.4.2. Regional tectonic setting and structural control
  • 12.4.3. Offshore basins
  • 12.4.4. Post-break-up plate moion changes
  • 12.5. Neotectonics
  • 12.6. Denudation chronologies from fission-track data
  • 12.7. Fission-track data from the South Atlantic margins
  • 12.7.1. The southeast Brazilian margin
  • 12.7.2. The southwest African margin
  • 12.7.2.1. Soth Africa
  • 12.7.2.2. Namibia
  • 12.8. Mapping denudation over time
  • 12.9. Post-break-up landscape evolution
  • 12.10. Conclussions and outstanding research questions
  • 13. Late Cenozoic landscape evolution of the US Atlantic passive margin: ingights into a Norh American great escarpment / Frank J. Pazzaglia and Thomas W. Gardner. 13.1. Introducion
  • 13.2. Morphological and geological setting
  • 13.3. Previous work
  • 13.4. Late Cenozoic flexural deformation of the Middle and Southern Atlantic margin
  • 13.4.1. Offshore basins
  • 13.4.2. Continental denudation - 13.4.3. Coastal plain
  • 13.4.4. Piedmont terraces
  • 13.4.5. Time lines
  • 13.5. Geodynamic models
  • 13.5.1. One-dimensional model
  • 13.5.2. Two-dimensional model
  • 13.5.3. Methological and data errors
  • 13.6. Results
  • 13.7. Discussion and conclussions
  • 13.7.1. The Fall zone, Piedmont and coastal plain
  • 13.7.2. he Blue ridge and drainage divide
  • 13.7.3. A North American great escarpment
  • 14. Linking tectonicas and landscape development in a passive margin setting: the Transartactic mountains / Andrew Kerr, David E. Sugden and Michael A. Summerfield. 14.1. Introduction
  • 14.2. The Transantartic mountains
  • 14.2.1. Morphology
  • 14.2.2. Geology
  • 14.3. Geophysical, geochemical and geochronological data
  • 14.3.1. Gravity and magnetic data
  • 14.3.2. Fission-track data
  • 14.3.3. Sesmic and structural data
  • 14.3.4. Geochemical and geochronological data from volcanic rocks
  • 14.4. Evidence for surface processes
  • 14.4.1. Role of recent glacial erosion
  • 14.4.2. Models of landscape evolution
  • 14.4.3. Climatic interprretarion of ladscape development
  • 14.5. Tectonic models of ladscape development
  • 14.6. Towards a model of landscape evolution in the dry valleys region
  • 14.6.1. Landscape components
  • 14.6.2. Denudation chronology
  • 14.6.3. Model of landscape evolution
  • 14.7. Integration of geomorphic and tectonic approachers: broader research issues
  • 14.8. Conclussions
  • 15. Morphotectonic evolution of the Western Ghats, India / Y. Gunnell and L. Fleitout. 15.1. Introduction
  • 15.2. The Western Ghats passive margin shoulder. Overview
  • 15.3. Theoretical models
  • 15.4. Modelling assumptions and geomorphological constraints
  • 15.5. Flexural model and erosional history
  • 15.6. Discussion
  • 15.6.1. The lithospheric model: strenghs and limitations
  • 15.6.2. Fission-track data in global geomorphology: advantages and disadvantages
  • 15.7. Conclussions
  • 16. The growth and decay of oceanic islands / A. B. Watts. 16.1. Introduction
  • 16.2. Growth
  • 16.3. Flexure of the lithosphere
  • 16.4. Drowned active volcanoes
  • 16.5. Decay
  • 16.6. Discussions.