Reservoir model desing : a practioner's guide

Guardado en:
Detalles Bibliográficos
Autor principal: Ringrose, Philip
Otros Autores: Bentley, Mark
Formato: Libro
Lenguaje:Inglés
Publicado: (London): Springer 2015
Edición:1a. ed.
Materias:
Aporte de:Registro referencial: Solicitar el recurso aquí
Tabla de Contenidos:
  • 1. Model Purpose 1.1 Modelling for Comfort?
  • 1.2 Models for Visualisation Alone
  • 1.3 Models for volumes
  • 1.4 Models as a Front End to Simulation
  • 1.5 Models for Well Planning
  • 1.6 Models for Seismic Modelling
  • Models for IOR
  • 1.8 Models for Storage
  • 1.9 The Fit-for-Purpose Model
  • References.
  • 2. The Rock Model 2.1 Rock Modelling
  • 2.2 Model concept
  • 2.3 The structural and Stratigraphic Framework
  • 2.3.1 Structural data
  • 2.3.2 Stratigraphic data
  • 2.4 Model elements
  • 2.4.1 Reservoir models not geological models
  • 2.4.2 Building Blocks
  • 2.4.3 Models element types
  • 2.4.4 How much heterogeneity to include?
  • 2.5 Determinism and probability
  • 2.51 Balance betwee deterministic and probalitity
  • 2.5.2 Different generic approaches
  • 1.5.3 Forms of deterministic control
  • 2.6 Essential geostatistical
  • 2.6.1 Key geostatistical concepts
  • 2.6.2 Intuitive geostatical
  • 2.7 Algorithm Choice and control
  • 2.7.1 Objetct modelling
  • 2.7.2 Pixel-based modelling
  • 2.7.3 Texture-based modelling
  • 2.7.4. The importance of deterministic trends - 2.7.5. Alternative rock modelling methods - a comparison
  • 2.8 ummary
  • 2.8.1 Sense cheking the rock model
  • 2.8.2 Synopsis - rock modelling guidelines
  • References.
  • 3. The Property Model
  • 3.1 Which properties?
  • 3.2 Understanding permeabilite
  • 3.2.1 Darcy`s Law
  • 3.2.2 Upscaled permeability
  • 3.2.3 Permeability variation in the subsurface
  • 3.2.4 Permeability avrages
  • 3.2.5 Numerical estimation of block permeabiity
  • 3.2.6 Permeability in fractures
  • 3.3 Handling statistical data
  • 3.3.1 Introduction
  • 3.3.2 Variance and uncertainty
  • 3.3.3 The normal distribution and its transforms
  • 3.3.4 Handling o-k distribution and cross plots
  • 3.3.5 Hydraulic flow units
  • 3.4 Modelling property distributions
  • 3.4.1 Kriging
  • 3.4.2 The variogram
  • 3.4.3 Gaussian simulation
  • 3.4.4 Bayesian statistics
  • 3.4.5 Propety modelling: object-based workflow
  • 3.4.6 Property modelling: sistemic-based workflow
  • 3.5 Use of cut-offs and N/G ratios
  • 3.5.1 Introduction
  • 3.5.2 The Net-to gross method
  • 3.5.3 Total property modelling
  • 3.6 Vertical permeability and barriers
  • 3.6.1 Introduction to k/v k/h
  • 3.6.2 Modelling of permeability anisotropy
  • 3.7 Saturation modelling 3.7.1 Capillary pressure
  • 3.7.2 Saturtion heigh functions
  • 3.7.3 Tilted oil-water contacts
  • 3.8 Summary
  • Reference.
  • 4. Upscaling Flow Properties
  • 4.1 Multi-scale flow modelling
  • 4.2 Multi-phase flow
  • 4.2.1 Two-phase floww
  • 4.2.2 Two-phase steady-state upscaling methods
  • 4.2.3 Heterogeneity and Fluid forces
  • 4.3 Multi-scale geological modelling concepts
  • 4.3.1 Geology and scale
  • 4.3.2 How many scales to model and upscale?
  • 4.3.3 Which scales ti focus on ? (The REV)
  • 4.3.4 Handling variannce as a funtion of scale
  • 4.3.5 Construction of geomodel and simulator grids
  • 4.3.6 Which heterogeneities Matter?
  • 4.4 The way forward
  • 4.4.1 Potential and pitfalls
  • 4.4.2 Pre-to-field workflow
  • 4.4.3 Essentials of multi-scale reservoir modelling
  • References.
  • 5. Handling Model Uncertainty
  • 5.1 The Issue
  • 5.1.1 Modelling for comfort
  • 5.1.2 Modelling to Ilustrate uncertainty
  • 5.2 Differing approaches
  • 5.3 Anchoring
  • 5.3.1 The limits of rationalism
  • 5.3.2 Anchrng and the limits of geostatistics
  • 5.4 Scenarios defined
  • 5.5 The uncetainty list
  • 5.6 Applications
  • 5.6.1 Grennfield case
  • 5.6.2 Brownfield case
  • 5.7 Scenario modelling-benefits
  • 5.8 Multiple model handling
  • 5.9 Linking deterministic models with probabilistic reporting
  • 5.10 Scenarios anda uncertainty-handling
  • Reference.
  • 6. Reservoir model types
  • 6.1Aeolinan reservoirs
  • 6.1.1 Elements
  • 6.1.2 Effetive properties
  • 6.1.3 Stacking
  • 6.1.4 Aeolian system anisotropy
  • 6.1.5 Laminae-scale effects
  • 6.2 Fluvial reservoir
  • 6.2.1 Fluvial systems
  • 6.2.2 Geometry
  • 6.2.3 Conectivity and percolation theory
  • 6.2.4 Hieranchy
  • 6.3 Tidal deltaic sandstone reservoirs
  • 6.3.1 Tidal characteristics
  • 6.3.2 Handlig heterolithics
  • 6.4 Shallow marime sandstone reservoirs
  • 6.4.1 Tanks of Sand?
  • 6.4.2 Stacking and laminations
  • 6.43 Large-scale impact of samall-scale heterogeneities
  • 6.5 Deep marine sandstone reservoirs
  • 6.5.1 Confinement
  • 6.5.2 Seismic limits
  • 6.5.3 Thin beds
  • 6.5.4 Small-scale heterogeneity in high net-to-gross "tanks"
  • 6.5.5 Summary
  • 6.6 Carbonate reservoirs
  • 6.6.1Depositional architecture
  • 6.6.2 Pore fabric
  • 6.6.3 Diagenesis
  • 6.6.4 Fractures and karst
  • 6.6.5 Hierarchies of scale - the carbonate REV
  • 6.6.6 Conclusion: fortward-modelling or inversion?
  • 6.7 Structurally-controlled reservoirs
  • 6.7.1 Lo Density fractures reservoirs (fault-dominated)
  • 6.7.2 High density fractures resrvoirs (joint-dominated)
  • 6.8 Fit-for-purpose recapituation
  • References.
  • 7 Epilogue
  • 7.1 The story so far
  • 7.2 What`s next?
  • 7.2. Geology-past and future
  • 7.3 Reservoir modelling future
  • References. Nomenclature. Solutions. Index