Usted se encuentra revisando un registro bibliográfico de la BDU Para conocer mas sobre la Base de Datos Unificada haga click en el ícono del home

Titulos:
Infinite graphs and planar maps / Mark E. Watkins.
Idiomas:
eng
Lugar de Edición:
Editor:
Fecha de Edición:
Notas #:
En Topics in topological graph theory / edited by Lowell W Beineke - Robin J. Wilson - Cambridge : Cambridge University, [2009] - (Encyclopedia of Mathematics and its applications ; 128).
Nota de contenido:
Topological properties of infinite graphs may be global or local. The number of ends (equivalence classes of rays that cannot be separated by a finite subgraph) and whether a given end contains an infinite set of pairwise disjoint rays describe an infinite graph globally. Automorphisms are of interest in terms of both the cardinalities of their set of orbits as well as the cardinalities of the orbis themselves. The notion of connectivity is refined to consider whether the deletion of a subgraph leaves finite or infinite components. The rate of growth, whether polynomial or exponential, tells much about the graph`s global structure. Embedding of infinite graphs is of interest primarily in non-compact surfaces such as the plane, but even in the plane, issues arise concerning accumulation points. the interaction of these considerations is brought to bear on the structere of infinite planar graphs and maps.
Palabras clave:
Link:
El registro bibliográfico incluye un link a una web externa el cual puede apuntar al índice de la publicación o en caso de estar en acceso abierto, al texto completo del material
Leader:
naa#
Campo 008:
110428s2009####nyu###########000#0#eng#d
Campo 041:
1#^aeng
Campo 100:
1#^aWatkins, Mark E.
Campo 245:
10^aInfinite graphs and planar maps /^cMark E. Watkins.
Campo 246:
Campo 300:
##^a289-312 p. ;^c21, 5 cm.
Campo 500:
##^aEn Topics in topological graph theory / edited by Lowell W Beineke - Robin J. Wilson - Cambridge : Cambridge University, [2009] - (Encyclopedia of Mathematics and its applications ; 128).
Campo 520:
##^aTopological properties of infinite graphs may be global or local. The number of ends (equivalence classes of rays that cannot be separated by a finite subgraph) and whether a given end contains an infinite set of pairwise disjoint rays describe an infinite graph globally. Automorphisms are of interest in terms of both the cardinalities of their set of orbits as well as the cardinalities of the orbis themselves. The notion of connectivity is refined to consider whether the deletion of a subgraph leaves finite or infinite components. The rate of growth, whether polynomial or exponential, tells much about the graph`s global structure. Embedding of infinite graphs is of interest primarily in non-compact surfaces such as the plane, but even in the plane, issues arise concerning accumulation points. the interaction of these considerations is brought to bear on the structere of infinite planar graphs and maps.
Campo 653:
##^aTopological properties
Campo 653:
##^aInfinite graphs
Campo 653:
##^aPlanar maps
Campo 700:
1#^aBeineke, Lowell W.^4edt
Campo 700:
1#^aWilson, Robin J.^4edt
Campo 856:
##^uhttp://www.bookdepository.co.uk/book/9780521802307/
Proveniencia:
##^aUniversidad Nacional de San Luis - Sistema de Bibliotecas
Seleccionar y guardar el registro Haga click en el botón del carrito
Institucion:
Universidad Nacional de San Luis
Dependencia:
Sistema de Bibliotecas - Colección MARC21

Compartir este registro en Redes Sociales

Seleccionar y guardar el registro Haga click en el botón del carrito