Usted se encuentra revisando un registro bibliográfico de la BDU Para conocer mas sobre la Base de Datos Unificada haga click en el ícono del home

Titulos:
Integration of one-forms on p-adic analytic spaces Vladimir G. Berkovich.
Idiomas:
eng
ISBN:
1-4008-3715-4; 1-299-13333-9; 0-691-12741-7
Lugar de Edición:
Princeton, N.J. :
Editor:
Princeton University Press,
Fecha de Edición:
2007.
Notas #:
Description based upon print version of record.
Notas Formateada:
""Cover""; ""Title""; ""Copyright""; ""Contents""; ""Introduction""; ""1. Naive Analytic Functions and Formulation of the Main Result""; ""2. Étale Neighborhoods of a Point in a Smooth Analytic Space""; ""3. Properties of Strictly Poly-stable and Marked Formal Schemes""; ""4. Properties of the Sheaves""; ""5. Isocrystals""; ""6. F-isocrystals""; ""7. Construction of the Sheaves""; ""8. Properties of the sheaves""; ""9. Integration and Parallel Transport along a Path""; ""References""; ""Index of Notation""; ""Index of Terminology""
Nota de contenido:
Among the many differences between classical and p-adic objects, those related to differential equations occupy a special place. For example, a closed p-adic analytic one-form defined on a simply-connected domain does not necessarily have a primitive in the class of analytic functions. In the early 1980s, Robert Coleman discovered a way to construct primitives of analytic one-forms on certain smooth p-adic analytic curves in a bigger class of functions. Since then, there have been several attempts to generalize his ideas to smooth p-adic analytic spaces of higher dimension, but the spaces con
Palabras clave:
p-adic analysis.

Leader:
nam
Campo 008:
060125s2007 nju ob 001 0 eng d
Campo 020:
^a1-4008-3715-4
Campo 020:
^a1-299-13333-9
Campo 020:
^a0-691-12741-7
Campo 035:
^a(CKB)2560000000324442
Campo 035:
^a(EBL)1124333
Campo 035:
^a(OCoLC)845250381
Campo 035:
^a(SSID)ssj0000508844
Campo 035:
^a(PQKBManifestationID)11955382
Campo 035:
^a(PQKBTitleCode)TC0000508844
Campo 035:
^a(PQKBWorkID)10563193
Campo 035:
^a(PQKB)11662416
Campo 035:
^a(MiAaPQ)EBC1124333
Campo 035:
^a(EXLCZ)992560000000324442
Campo 040:
^aMiAaPQ^cMiAaPQ^dMiAaPQ
Campo 041:
^aeng
Campo 100:
1 ^aBerkovich, Vladimir G.
Campo 245:
10^aIntegration of one-forms on p-adic analytic spaces^h[electronic resource] /^cVladimir G. Berkovich.
Campo 246:
Campo 260:
^aPrinceton, N.J. :^bPrinceton University Press,^c2007.
Campo 300:
^a1 online resource (163 p.)
Campo 440:
0^aAnnals of mathematics studies ;^vno. 162
Campo 490:
1 ^aAnnals of Mathematics Studies ;^vv.162
Campo 500:
^aDescription based upon print version of record.
Campo 505:
0 ^a""Cover""; ""Title""; ""Copyright""; ""Contents""; ""Introduction""; ""1. Naive Analytic Functions and Formulation of the Main Result""; ""2. Étale Neighborhoods of a Point in a Smooth Analytic Space""; ""3. Properties of Strictly Poly-stable and Marked Formal Schemes""; ""4. Properties of the Sheaves""; ""5. Isocrystals""; ""6. F-isocrystals""; ""7. Construction of the Sheaves""; ""8. Properties of the sheaves""; ""9. Integration and Parallel Transport along a Path""; ""References""; ""Index of Notation""; ""Index of Terminology""
Campo 520:
^aAmong the many differences between classical and p-adic objects, those related to differential equations occupy a special place. For example, a closed p-adic analytic one-form defined on a simply-connected domain does not necessarily have a primitive in the class of analytic functions. In the early 1980s, Robert Coleman discovered a way to construct primitives of analytic one-forms on certain smooth p-adic analytic curves in a bigger class of functions. Since then, there have been several attempts to generalize his ideas to smooth p-adic analytic spaces of higher dimension, but the spaces con
Campo 650:
0^ap-adic analysis.
Proveniencia:
^aUniversidad de San Andrés - Biblioteca Max Von Buch
Seleccionar y guardar el registro Haga click en el botón del carrito
Institucion:
Universidad de San Andrés
Dependencia:
Biblioteca Max Von Buch

Compartir este registro en Redes Sociales

Seleccionar y guardar el registro Haga click en el botón del carrito