Usted se encuentra revisando un registro bibliográfico de la BDU Para conocer mas sobre la Base de Datos Unificada haga click en el ícono del home

Titulos:
Green's function estimates for lattice Schrödinger operators and applications / J. Bourgain.
Idiomas:
eng
ISBN:
1-4008-3714-6; 0-691-12098-6
Lugar de Edición:
Editor:
Fecha de Edición:
Notas #:
Description based upon print version of record.
Notas Formateada:
Cover; Title; Copyright; Contents; Acknowledgment; Chapter 1. Introduction; Chapter 2. Transfer Matrix and Lyapounov Exponent; Chapter 3. Herman's Subharmonicity Method; Chapter 4. Estimates on Subharmonic Functions; Chapter 5. LDT for Shift Model; Chapter 6. Avalanche Principle in SL2(R); Chapter 7. Consequences for LyapounovExponent, IDS, and Green's Function; Chapter 8. Refinements; Chapter 9. Some Facts about Semialgebraic Sets; Chapter 10. Localization; Chapter 11. Generalization to Certain Long-Range Models; Chapter 12. Lyapounov Exponent and Spectrum; Chapter 13. Point Spectrum in Multifrequency Models at Small DisorderChapter 14. A Matrix-Valued Cartan-Type Theorem; Chapter 15. Application to Jacobi Matrices Associated with Skew Shifts; Chapter 16. Application to the Kicked Rotor Problem; Chapter 17. Quasi-Periodic Localization on the Z; Appendix
Nota de contenido:
This book presents an overview of recent developments in the area of localization for quasi-periodic lattice Schrödinger operators and the theory of quasi-periodicity in Hamiltonian evolution equations. The physical motivation of these models extends back to the works of Rudolph Peierls and Douglas R. Hofstadter, and the models themselves have been a focus of mathematical research for two decades. Jean Bourgain here sets forth the results and techniques that have been discovered in the last few years. He puts special emphasis on so-called ""non-perturbative"" methods and the important role of
Palabras clave:
Schrödinger operator.; Green's functions.; Hamiltonian systems.; Evolution equations.

Leader:
nam
Campo 008:
140904t20052005nju ob 000 0 eng d
Campo 020:
^a1-4008-3714-6
Campo 020:
^a0-691-12098-6
Campo 035:
^a(CKB)2670000000205180
Campo 035:
^a(EBL)1771114
Campo 035:
^a(SSID)ssj0000689660
Campo 035:
^a(PQKBManifestationID)12236421
Campo 035:
^a(PQKBTitleCode)TC0000689660
Campo 035:
^a(PQKBWorkID)10620242
Campo 035:
^a(PQKB)10423749
Campo 035:
^a(MiAaPQ)EBC1771114
Campo 035:
^a(EXLCZ)992670000000205180
Campo 040:
^aMiAaPQ^beng^erda^epn^cMiAaPQ^dMiAaPQ
Campo 041:
^aeng
Campo 100:
1 ^aBourgain, Jean,^d1954-2018.^eauthor.
Campo 245:
10^aGreen's function estimates for lattice Schrödinger operators and applications /^cJ. Bourgain.
Campo 246:
Campo 300:
^a1 online resource (184 p.)
Campo 490:
1 ^aAnnals of Mathematics Studies ;^vNumber 158
Campo 500:
^aDescription based upon print version of record.
Campo 505:
0 ^aCover; Title; Copyright; Contents; Acknowledgment; Chapter 1. Introduction; Chapter 2. Transfer Matrix and Lyapounov Exponent; Chapter 3. Herman's Subharmonicity Method; Chapter 4. Estimates on Subharmonic Functions; Chapter 5. LDT for Shift Model; Chapter 6. Avalanche Principle in SL2(R); Chapter 7. Consequences for LyapounovExponent, IDS, and Green's Function; Chapter 8. Refinements; Chapter 9. Some Facts about Semialgebraic Sets; Chapter 10. Localization; Chapter 11. Generalization to Certain Long-Range Models; Chapter 12. Lyapounov Exponent and Spectrum
Campo 505:
8 ^aChapter 13. Point Spectrum in Multifrequency Models at Small DisorderChapter 14. A Matrix-Valued Cartan-Type Theorem; Chapter 15. Application to Jacobi Matrices Associated with Skew Shifts; Chapter 16. Application to the Kicked Rotor Problem; Chapter 17. Quasi-Periodic Localization on the Z^d-lattice (d > 1); Chapter 18. An Approach to Melnikov's Theorem on Persistency of Non-resonant Lower Dimension Tori; Chapter 19. Application to the Construction of Quasi-Periodic Solutions of Nonlinear Schrödinger Equations; Chapter 20. Construction of Quasi-Periodic Solutions of Nonlinear Wave Equations
Campo 505:
8 ^aAppendix
Campo 520:
^aThis book presents an overview of recent developments in the area of localization for quasi-periodic lattice Schrödinger operators and the theory of quasi-periodicity in Hamiltonian evolution equations. The physical motivation of these models extends back to the works of Rudolph Peierls and Douglas R. Hofstadter, and the models themselves have been a focus of mathematical research for two decades. Jean Bourgain here sets forth the results and techniques that have been discovered in the last few years. He puts special emphasis on so-called ""non-perturbative"" methods and the important role of
Campo 650:
0^aSchrödinger operator.
Campo 650:
0^aGreen's functions.
Campo 650:
0^aHamiltonian systems.
Campo 650:
0^aEvolution equations.
Proveniencia:
^aUniversidad de San Andrés - Biblioteca Max Von Buch
Seleccionar y guardar el registro Haga click en el botón del carrito
Institucion:
Universidad de San Andrés
Dependencia:
Biblioteca Max Von Buch

Compartir este registro en Redes Sociales

Seleccionar y guardar el registro Haga click en el botón del carrito