Usted se encuentra revisando un registro bibliográfico de la BDU Para conocer mas sobre la Base de Datos Unificada haga click en el ícono del home

Titulos:
Radon transforms and the rigidity of the Grassmannians Jacques Gasqui and Hubert Goldschmidt.
Idiomas:
eng
ISBN:
1-282-15898-8; 9786612158988; 1-4008-2617-9
Lugar de Edición:
Princeton, N.J. :
Editor:
Princeton University Press,
Fecha de Edición:
2004.
Notas #:
Description based upon print version of record.
Notas Formateada:
TABLE OF CONTENTS; INTRODUCTION; CHAPTER I: SYMMETRIC SPACES AND EINSTEIN MANIFOLDS; CHAPTER II: RADON TRANSFORMS ON SYMMETRIC SPACES; CHAPTER III: SYMMETRIC SPACES OF RANK ONE; CHAPTER IV: THE REAL GRASSMANNIANS; CHAPTER V: THE COMPLEX QUADRIC; CHAPTER VI: THE RIGIDITY OF COMPLEX QUADRIC; CHAPTER VII: THE RIGIDITY OF THE REAL GRASSMANNIANS; CHAPTER VIII: THE COMPLEX GRASSMANNIANS; CHAPTER IX: THE RIGIDITY OF THE COMPLEX GRASSMANNIANS; CHAPTER X: PRODUCTS OF SYMMETRIC SPACES; REFERENCES; INDEX
Nota de contenido:
This book provides the first unified examination of the relationship between Radon transforms on symmetric spaces of compact type and the infinitesimal versions of two fundamental rigidity problems in Riemannian geometry. Its primary focus is the spectral rigidity problem: Can the metric of a given Riemannian symmetric space of compact type be characterized by means of the spectrum of its Laplacian? It also addresses a question rooted in the Blaschke problem: Is a Riemannian metric on a projective space whose geodesics are all closed and of the same length isometric to the canonical metric?
Palabras clave:
Radon transforms.; Grassmann manifolds.

Leader:
nam
Campo 008:
031027s2004 nju ob 001 0 eng d
Campo 020:
^a1-282-15898-8
Campo 020:
^a9786612158988
Campo 020:
^a1-4008-2617-9
Campo 035:
^a(CKB)1000000000788579
Campo 035:
^a(EBL)457718
Campo 035:
^a(OCoLC)437268713
Campo 035:
^a(SSID)ssj0000232337
Campo 035:
^a(PQKBManifestationID)11173535
Campo 035:
^a(PQKBTitleCode)TC0000232337
Campo 035:
^a(PQKBWorkID)10214021
Campo 035:
^a(PQKB)10369477
Campo 035:
^a(MiAaPQ)EBC457718
Campo 035:
^a(EXLCZ)991000000000788579
Campo 040:
^aMiAaPQ^cMiAaPQ^dMiAaPQ
Campo 041:
^aeng
Campo 100:
1 ^aGasqui, Jacques.
Campo 245:
10^aRadon transforms and the rigidity of the Grassmannians^h[electronic resource] /^cJacques Gasqui and Hubert Goldschmidt.
Campo 246:
Campo 260:
^aPrinceton, N.J. :^bPrinceton University Press,^c2004.
Campo 300:
^a1 online resource (385 p.)
Campo 490:
1 ^aAnnals of mathematics studies ;^vno. 156
Campo 500:
^aDescription based upon print version of record.
Campo 505:
0 ^aTABLE OF CONTENTS; INTRODUCTION; CHAPTER I: SYMMETRIC SPACES AND EINSTEIN MANIFOLDS; CHAPTER II: RADON TRANSFORMS ON SYMMETRIC SPACES; CHAPTER III: SYMMETRIC SPACES OF RANK ONE; CHAPTER IV: THE REAL GRASSMANNIANS; CHAPTER V: THE COMPLEX QUADRIC; CHAPTER VI: THE RIGIDITY OF COMPLEX QUADRIC; CHAPTER VII: THE RIGIDITY OF THE REAL GRASSMANNIANS; CHAPTER VIII: THE COMPLEX GRASSMANNIANS; CHAPTER IX: THE RIGIDITY OF THE COMPLEX GRASSMANNIANS; CHAPTER X: PRODUCTS OF SYMMETRIC SPACES; REFERENCES; INDEX
Campo 520:
^a This book provides the first unified examination of the relationship between Radon transforms on symmetric spaces of compact type and the infinitesimal versions of two fundamental rigidity problems in Riemannian geometry. Its primary focus is the spectral rigidity problem: Can the metric of a given Riemannian symmetric space of compact type be characterized by means of the spectrum of its Laplacian? It also addresses a question rooted in the Blaschke problem: Is a Riemannian metric on a projective space whose geodesics are all closed and of the same length isometric to the canonical metric?
Campo 650:
0^aRadon transforms.
Campo 650:
0^aGrassmann manifolds.
Campo 700:
1 ^aGoldschmidt, Hubert,^d1942-
Proveniencia:
^aUniversidad de San Andrés - Biblioteca Max Von Buch
Seleccionar y guardar el registro Haga click en el botón del carrito
Institucion:
Universidad de San Andrés
Dependencia:
Biblioteca Max Von Buch

Compartir este registro en Redes Sociales

Seleccionar y guardar el registro Haga click en el botón del carrito