Usted se encuentra revisando un registro bibliográfico de la BDU Para conocer mas sobre la Base de Datos Unificada haga click en el ícono del home

Titulos:
Intelligent image processing / Steve Mann.
Idiomas:
eng
ISBN:
1-280-55633-1; 9786610556335; 0-470-35425-9; 0-471-22163-5
Lugar de Edición:
Editor:
Fecha de Edición:
Notas #:
"Wiley-Interscience."
Notas Formateada:
Preface 1 Humanistic Intelligence as a Basis for Intelligent Image Processing 1.1 Humanistic Intelligence/ 1.2 "WearComp" as Means of Realizing Humanistic Intelligence 1.3 Practical Embodiments of Humanistic Intelligence 2 Where on the Body is the Best Place for a Personal Imaging System? 2.1 Portable Imaging Systems 2.2 Personal Handheld Systems 2.3 Concomitant Cover Activities and the Videoclips Camera System 2.4 The Wristwatch Videophone: A Fully Functional "Always Ready" Prototype 2.5 Telepointer: Wearable Hands-Free Completely Self-Contained Visual Augmented Reality 2.6 Portable Personal Pulse Doppler Radar Vision System Based on Time-Frequency Analysis and q-Chirplet Transform 2.7 When Both Camera and Display are Headworn: Personal Imaging and Mediated Reality 2.8 Partially Mediated Reality 2.9 Seeing "Eye-to-Eye" 2.10 Exercises, Problem Sets, and Homework 3 The EyeTap Principle: Effectively Locating the Camera Inside the Eye as an Alternative to Wearable Camera Systems 3.1 A Personal Imaging System for Lifelong Video Capture 3.2 The EyeTap Principle 3.3 Practical Embodiments of EyeTap 3.4 Problems with Previously Known Camera Viewfinders 3.5 The Aremac 3.6 The Foveated Personal Imaging System 3.7 Teaching the EyeTap Principle 3.8 Calibration of EyeTap Systems 3.9 Using the Device as a Reality Mediator 3.10 User Studies 3.11 Summary and Conclusions 3.12 Exercises, Problem Sets, and Homework 4 Comparametric Equations, Quantigraphic Image Processing, and Comparagraphic Rendering 4.1 Historical Background 4.2 The Wyckoff Principle and the Range of Light 4.3 Comparametric Image Processing: Comparing Differently Exposed Images of the Same Subject Matter 4.4 The Comparagram: Practical Implementations of Comparanalysis 4.5 Spatiotonal Photoquantigraphic Filters 4.6 Glossary of Functions 4.7 Exercises, Problem Sets, and Homework 5 Lightspace and Antihomomorphic Vector Spaces 5.1 Lightspace 5.2 The Lightspace Analysis Function 5.3 The "Spotflash" Primitive 5.4 LAF?LSF Imaging ("Lightspace") 5.5 Lightspace Subspaces 5.6 "Lightvector" Subspace 5.7 Painting with Lightvectors: Photographic/Videographic Origins and Applications of WearComp-Based Mediated Reality 5.8 Collaborative Mediated Reality Field Trials 5.9 Conclusions 5.10 Exercises, Problem Sets, and Homework 6 VideoOrbits: The Projective Geometry Renaissance 6.1 VideoOrbits 6.2 Background 6.3 Framework: Motion Parameter Estimation and Optical Flow 6.4 Multiscale Implementations in 2-D 6.5 Performance and Applications 6.6 AGC and the Range of Light 6.7 Joint Estimation of Both Domain and Range Coordinate Transformations 6.8 The Big Picture 6.9 Reality Window Manager 6.10 Application of Orbits: The Photonic Firewall 6.11 All the World's a Skinner Box 6.12 Blocking Spam with a Photonic Filter 6.13 Exercises, Problem Sets, and Homework Appendix A: Safety First! Appendix B: Multiambic Keyer for Use While Engaged in Other Activities B.1 Introduction B.2 Background and Terminology on Keyers B.3 Optimal Keyer Design: The Conformal Keyer B.4 The Seven Stages of a Keypress B.5 The Pentakeyer B.6 Redundancy B.7 Ordinally Conditional Modifiers B.8 Rollover B.8.1 Example of Rollover on a Cybernetic Keyer B.9 Further Increasing the Chordic Redundancy Factor: A More Expressive Keyer B.10 Including One Time Constant B.11 Making a Conformal Multiambic Keyer B.12 Comparison to Related Work B.13 Conclusion B.14 Acknowledgments Appendix C: WearCam GNUX Howto C.1 Installing GNUX on WearComps C.2 Getting Started C.3 Stop the Virus from Running C.4 Making Room for an Operating System C.5 Other Needed Files C.6 Defrag / 323 C.7 Fips C.8 Starting Up in GNUX with Ramdisk Appendix D: How to Build a Covert Computer Imaging System into Ordinary Looking Sunglasses D.1 The Move from Sixth-Generation WearComp to Seventh-Generation D.2 Label the Wires! D.3 Soldering Wires Directly to the Kopin CyberDisplay D.4 Completing the Computershades Bibliography Index.
Nota de contenido:
Intelligent Image Processing describes the EyeTap technology that allows non-invasive tapping into the human eye through devices built into eyeglass frames. This isn't merely about a computer screen inside eyeglasses, but rather the ability to have a shared telepathic experience among viewers. Written by the developer of the EyeTap principle, this work explores the practical application and far-reaching implications this new technology has for human telecommunications.
Palabras clave:
Image processing.; Computational intelligence.

Leader:
nam
Campo 008:
010308s2002 nyua ob 001 0 eng
Campo 020:
^a1-280-55633-1
Campo 020:
^a9786610556335
Campo 020:
^a0-470-35425-9
Campo 020:
^a0-471-22163-5
Campo 035:
^a(CKB)111087027125458
Campo 035:
^a(MH)008821305-6
Campo 035:
^a(SSID)ssj0000080445
Campo 035:
^a(PQKBManifestationID)11119065
Campo 035:
^a(PQKBTitleCode)TC0000080445
Campo 035:
^a(PQKBWorkID)10095488
Campo 035:
^a(PQKB)11654979
Campo 035:
^a(CaBNVSL)mat05201688
Campo 035:
^a(IDAMS)0b0000648104abdc
Campo 035:
^a(IEEE)5201688
Campo 035:
^a(EXLCZ)99111087027125458
Campo 040:
^aCaBNVSL^beng^erda^cCaBNVSL^dCaBNVSL
Campo 041:
^aeng
Campo 100:
1 ^aMann, Steve,^d1962-
Campo 245:
10^aIntelligent image processing /^cSteve Mann.
Campo 246:
Campo 300:
^a1 online resource (xviii, 342 p. )^bill. ;
Campo 440:
0^aAdaptive and learning systems for signal processing, communications, and control
Campo 490:
1 ^aAdaptive and learning systems for signal processing, communications and control series ;^v35
Campo 500:
^a"Wiley-Interscience."
Campo 505:
0 ^aPreface 1 Humanistic Intelligence as a Basis for Intelligent Image Processing 1.1 Humanistic Intelligence/ 1.2 "WearComp" as Means of Realizing Humanistic Intelligence 1.3 Practical Embodiments of Humanistic Intelligence 2 Where on the Body is the Best Place for a Personal Imaging System? 2.1 Portable Imaging Systems 2.2 Personal Handheld Systems 2.3 Concomitant Cover Activities and the Videoclips Camera System 2.4 The Wristwatch Videophone: A Fully Functional "Always Ready" Prototype 2.5 Telepointer: Wearable Hands-Free Completely Self-Contained Visual Augmented Reality 2.6 Portable Personal Pulse Doppler Radar Vision System Based on Time-Frequency Analysis and q-Chirplet Transform 2.7 When Both Camera and Display are Headworn: Personal Imaging and Mediated Reality 2.8 Partially Mediated Reality 2.9 Seeing "Eye-to-Eye" 2.10 Exercises, Problem Sets, and Homework 3 The EyeTap Principle: Effectively Locating the Camera Inside the Eye as an Alternative to Wearable Camera Systems 3.1 A Personal Imaging System for Lifelong Video Capture 3.2 The EyeTap Principle 3.3 Practical Embodiments of EyeTap 3.4 Problems with Previously Known Camera Viewfinders 3.5 The Aremac 3.6 The Foveated Personal Imaging System 3.7 Teaching the EyeTap Principle 3.8 Calibration of EyeTap Systems 3.9 Using the Device as a Reality Mediator 3.10 User Studies 3.11 Summary and Conclusions 3.12 Exercises, Problem Sets, and Homework 4 Comparametric Equations, Quantigraphic Image Processing, and Comparagraphic Rendering 4.1 Historical Background 4.2 The Wyckoff Principle and the Range of Light 4.3 Comparametric Image Processing: Comparing Differently Exposed Images of the Same Subject Matter 4.4 The Comparagram: Practical Implementations of Comparanalysis 4.5 Spatiotonal Photoquantigraphic Filters 4.6 Glossary of Functions 4.7 Exercises, Problem Sets, and Homework 5 Lightspace and Antihomomorphic Vector Spaces 5.1 Lightspace 5.2 The Lightspace Analysis Function 5.3 The "Spotflash" Primitive 5.4 LAF?LSF Imaging ("Lightspace") 5.5 Lightspace Subspaces 5.6 "Lightvector" Subspace 5.7 Painting with Lightvectors: Photographic/Videographic Origins and Applications of WearComp-Based Mediated Reality 5.8 Collaborative Mediated Reality Field Trials 5.9 Conclusions 5.10 Exercises, Problem Sets, and Homework 6 VideoOrbits: The Projective Geometry Renaissance 6.1 VideoOrbits 6.2 Background 6.3 Framework: Motion Parameter Estimation and Optical Flow 6.4 Multiscale Implementations in 2-D 6.5 Performance and Applications 6.6 AGC and the Range of Light 6.7 Joint Estimation of Both Domain and Range Coordinate Transformations 6.8 The Big Picture 6.9 Reality Window Manager 6.10 Application of Orbits: The Photonic Firewall 6.11 All the World's a Skinner Box 6.12 Blocking Spam with a Photonic Filter 6.13 Exercises, Problem Sets, and Homework Appendix A: Safety First! Appendix B: Multiambic Keyer for Use While Engaged in Other Activities B.1 Introduction B.2 Background and Terminology on Keyers B.3 Optimal Keyer Design: The Conformal Keyer B.4 The Seven Stages of a Keypress B.5 The Pentakeyer B.6 Redundancy B.7 Ordinally Conditional Modifiers B.8 Rollover B.8.1 Example of Rollover on a Cybernetic Keyer B.9 Further Increasing the Chordic Redundancy Factor: A More Expressive Keyer B.10 Including One Time Constant B.11 Making a Conformal Multiambic Keyer B.12 Comparison to Related Work B.13 Conclusion B.14 Acknowledgments Appendix C: WearCam GNUX Howto C.1 Installing GNUX on WearComps C.2 Getting Started C.3 Stop the Virus from Running C.4 Making Room for an Operating System C.5 Other Needed Files C.6 Defrag / 323 C.7 Fips C.8 Starting Up in GNUX with Ramdisk Appendix D: How to Build a Covert Computer Imaging System into Ordinary Looking Sunglasses D.1 The Move from Sixth-Generation WearComp to Seventh-Generation D.2 Label the Wires! D.3 Soldering Wires Directly to the Kopin CyberDisplay D.4 Completing the Computershades Bibliography Index.
Campo 520:
^aIntelligent Image Processing describes the EyeTap technology that allows non-invasive tapping into the human eye through devices built into eyeglass frames. This isn't merely about a computer screen inside eyeglasses, but rather the ability to have a shared telepathic experience among viewers. Written by the developer of the EyeTap principle, this work explores the practical application and far-reaching implications this new technology has for human telecommunications.
Campo 650:
0^aImage processing.
Campo 650:
0^aComputational intelligence.
Campo 700:
^aRowe, Philip^eContributor
Proveniencia:
^aUniversidad de San Andrés - Biblioteca Max Von Buch
Seleccionar y guardar el registro Haga click en el botón del carrito
Institucion:
Universidad de San Andrés
Dependencia:
Biblioteca Max Von Buch

Compartir este registro en Redes Sociales

Seleccionar y guardar el registro Haga click en el botón del carrito