Usted se encuentra revisando un registro bibliográfico de la BDU Para conocer mas sobre la Base de Datos Unificada haga click en el ícono del home

Titulos:
The geometry of physics: an introduction / Theodore Frankel
Idiomas:
eng
ISBN:
0521387531
Lugar de Edición:
New York:
Editor:
Cambridge University Press,
Fecha de Edición:
c1997
Notas Formateada:
I.Manifolds, tensors, and exterior forms: 1.Manifolds and vector fields 2.Tensonrs and exterior forms 3.Integration of differential forms 4.The lie derivative 5.The Poincaré lemma and potentials 6.Holonomic and nonholonomic constraints II.Geometry and topology: 7.R3 and Minkowski space8.The geometry of surface in R3 9.Covariant differentiation and curvature 10.Geodesics 11.Relativity, tensors, and curvature 12.Curvature and topology: Synges theorem 13.Betti numbers and De Rhams theorem 14.Harmonic forms III.Lie groups, bundles, and Chern forms 15.Lie Groups 16.Vector bundles in geometry and physics 17.Fiber bundles, Gauss-Bonnet, and topological quantization 18.Connections and associated bundles 19.The Dirac equation 20.Yang-Mills fields 21.Betti numbers and covering spaces 22.Chern forms and homotopy groups -- Appendices
Palabras clave:
FISICA MATEMATICA; GEOMETRIA DIFERENCIAL; GEOMETRIA; TOPOLOGIA

Leader:
cam
Campo 003:
AR-BaIT
Campo 008:
040501t1997t xxu|||||||||||||||||eng||
Campo 020:
^a0521387531
Campo 040:
^aITBA^cITBA
Campo 041:
0 ^aeng
Campo 100:
1 ^aFrankel, Theodore^96427
Campo 245:
14^aThe geometry of physics:^ban introduction /^cTheodore Frankel
Campo 246:
Campo 260:
^aNew York:^bCambridge University Press,^cc1997
Campo 300:
^axxiv, 666 p.
Campo 505:
0 ^aI.Manifolds, tensors, and exterior forms: 1.Manifolds and vector fields 2.Tensonrs and exterior forms 3.Integration of differential forms 4.The lie derivative 5.The Poincaré lemma and potentials 6.Holonomic and nonholonomic constraints II.Geometry and topology: 7.R3 and Minkowski space8.The geometry of surface in R3 9.Covariant differentiation and curvature 10.Geodesics 11.Relativity, tensors, and curvature 12.Curvature and topology: Synges theorem 13.Betti numbers and De Rhams theorem 14.Harmonic forms III.Lie groups, bundles, and Chern forms 15.Lie Groups 16.Vector bundles in geometry and physics 17.Fiber bundles, Gauss-Bonnet, and topological quantization 18.Connections and associated bundles 19.The Dirac equation 20.Yang-Mills fields 21.Betti numbers and covering spaces 22.Chern forms and homotopy groups -- Appendices
Campo 650:
4^9587^aFISICA MATEMATICA
Campo 650:
4^917508^aGEOMETRIA DIFERENCIAL
Campo 650:
4^9624^aGEOMETRIA
Campo 650:
4^91335^aTOPOLOGIA
Proveniencia:
^aInstituto Tecnológico Buenos Aires (ITBA) - Biblioteca
Seleccionar y guardar el registro Haga click en el botón del carrito
Institucion:
Instituto Tecnológico Buenos Aires (ITBA)
Dependencia:
Biblioteca

Compartir este registro en Redes Sociales

Seleccionar y guardar el registro Haga click en el botón del carrito